...
Lobaro Pressure and Temperature Sensor | Lobaro Pressure Sensor | KELLER Series 26X | ||||
---|---|---|---|---|---|---|
Lobaro article: #3000625 | Lobaro article: | Lobaro article: #3000701 | ||||
|
|
| ||||
Red = VCC, Green = GND, RS485A = Yellow, RS485B = Blue | ||||||
|
...
Parameter | Value | Comment |
---|---|---|
WAN | lorawan | For LoRaWAN OTAA usage. |
PlFmt | 5 | Sets the payload to a short format. |
MbCmd | 0 0/15 * * * *:R,9600,8N1:010300160002,010300260002,fa0400050001 |
The CRON Expressions can be adjusted to set time of sensor reading. |
PowerOnDelay | 3000 | Battery variant only. Sets time (in ms) between activating sensor power and reading value (time for sensor to be ready). |
Modbus Register Mapping
The probe is a Modbus slave with the following registers:
...
Command
...
(since FW v0.10.2)
Starting from v0.10.2 we support a command for LoRaWAN only!
Parameter | Value | Comment |
---|---|---|
Cmd | 0 * * * * *:pressure(port=20) | Special command to upload in same format but calculating a more stable pressure value |
Modbus Register Mapping
The probe is a Modbus slave with the following registers:
Modbus Command: <Slave Address (1)><Function (1)><Address (2)><Length (2)>
- Length = Register count -> 1 Register = 2 Bytes
Function
- 0x03 = Read Holding Register
- 0x04 = Read Input Register
- 0x06 = Write Holding Register
Address | Function | Bytes | Data Scope | Description |
---|---|---|---|---|
0x0000 | 0x03 |
- Length = Register count -> 1 Register = 2 Bytes
Function
- 0x03 = Read Holding Register
- 0x04 = Read Input Register
- 0x06 = Write Holding Register
Address | Function | Bytes | Data Scope | Description |
---|---|---|---|---|
0x0000 | 0x03, 0x06 | 2 | 1-255 | Slave Address |
0x0001 | 0x03, 0x06 | 2 |
| Baud rate |
0x0002 | 0x03, 0x06 | 2 |
|
|
0x0003 | 0x03 | 2 |
| Pressure unit |
0x0004 | 0x03 | 2 |
| Decimal point stands for 0-4 digits |
0x0005 | 0x03 | 2 | 0-30 | Filtering Coefficient |
0x0016-0017 | 0x03 | 4 | 4 byte float | Measurement Pressure output value |
0x0018-0019 | 0x03, 0x06 | 4 | 4 byte float | Master variable of Pressure offset |
0x001A-001B | 0x03 | 4 | 4 byte float | Range minimum of Pressure Transmitter |
0x001C-001D | 0x03 | 4 | 4 byte float | Range maximum of Pressure Transmitter |
0x001E-001F | 0x03 | 4 | 4 byte float | Range minimum of Pressure Sensor |
0x0020-0021 | 0x03 | 4 | 4 byte float | Range maximum of Pressure Sensor |
0x0026-0027 | 0x03 | 4 | 4 byte float | Measurement Temperature output value |
0x00A6-00A7 | 0x06 | 4 | 4 byte float | Zero Clearing value of Pressure Transmitter |
0xFFFF | 0x06 | 2 |
| Save data to user area |
0xFFFC | 0x06 | 2 |
| Restore to factory status (user settings and calibration data) |
...
Field | Type | Value |
---|---|---|
Header | uint8 | 0x00 on success, 0x80 if an error occurred |
Pressure | float32 | Pressure in Bar , ffffffff on error. |
Temperature | float32 | Temperature in |
Voltage | uint16 | Voltage in mV, ffff on error |
LoRaWAN JavaScript Reference Parser (All probe variants)
Status | ||||
---|---|---|---|---|
|
Keller PR46X
Configuration
Connected pressure sensor probe from Keller Druckmesstechnik PR46X series.
Parameter | Value | Comment |
---|---|---|
WAN | lorawan | For LoRaWAN OTAA usage. |
PlFmt | 5 | Sets the payload to a short format. |
MbCmd | 0 0 * * * *:R,9600,8N1:010300020002,010300060002,FA0400050001 | Reads four Registers: 2 + 3 (Float, Pressure in Bar) and 6 + 7 (Float, Probe Temperature) + Device battery voltage |
PowerOnDelay | 1500 | Battery variant only. Sets time (in ms) between activating sensor power and reading value (time for sensor to be ready). |
Data Uplink (Port 20)
Code Block |
---|
Bytes | 0 . | 1 . 2 . 3 . 4 . | 5 . 6 . 7 . 8 . | 9 . 10 . |
------+--------+-----------------+-----------------+----------+
Field | Header | Pressure | Temperature | Voltage | |
All values are encoded big-endian
Field | Type | Value |
---|---|---|
Header | uint8 | 0x00 on success, 0x80 if an error occurred |
Pressure | float32 | Pressure in Bar , ffffffff on error. |
Temperature | float32 | Temperature in |
Voltage | uint16 | Voltage in mV, ffff on error |
LoRaWAN JavaScript Reference Parser (All probe variants)
Status | ||||
---|---|---|---|---|
|
Code Block | ||||||
---|---|---|---|---|---|---|
| ||||||
/**
* Parser for Lobaro Pressure Probe via LoRaWAN (hybrid gateway).
* Usable for Pressure Probe as or with Presure+Temperature Probe.
* Works with TTN, ChirpStack, or the Lobaro Platform.
*/
function signed(val, bits) {
// max positive value possible for signed int with bits:
var mx = Math.pow(2, bits-1);
if (val < mx) {
// is positive value, just return
return val;
} else {
// is negative value, convert to neg:
return val - (2 * mx);
}
}
// Note that MAX_SAFE_INTEGER is 9007199254740991
function toNumber_BE(bytes, len, signed) {
var res = 0;
var isNeg = false;
if (len == 0) {
len = bytes.length;
}
if (signed) {
isNeg = (bytes[0] & 0x80) != 0;
}
for (var i = 0; i < len ; i++) {
if (i == 0 && isNeg) {
// Treat most-significant bit as -2^i instead of 2^i
res += bytes[i] & 0x7F;
res -= 0x80;
} else { | ||||||
Code Block | ||||||
| ||||||
/** * Parser for Lobaro Pressure Probe via LoRaWAN (hybrid gateway). * Usable for Pressure Probe as or with Presure+Temperature Probe. * Works with TTN, ChirpStack, or the Lobaro Platform. */ function signed(val, bits) { // max positive value possible for signed int with bits: var mx = Math.pow(2, bits-1); if (val < mx) { // is positive value, just return return val; res } else {*= 256; // is negative value, convertres to neg:+= bytes[i]; return} val - (2 *} mx); return }res; } function int16_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return signed(bytes[0] << 8 | bytes[1] << 0, 2*8 8 | bytes[1] << 0, 2*8); } function int32_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return toNumber_BE(bytes, 4, true); } function uint16_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return bytes[0] << 8 | bytes[1] << 0; } function uint32_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return bytes[0] << 24 | bytes[1] << 16 | bytes[2] << 8 | bytes[3] << 0; } function float32FromInt(asInt) { << 0; } // float32([62, 132, 168, 155]) = 0.305068 function float32(bytes, idx) { bytes = bytes.slice(idx || 0); bytes = int32_BE(bytes, 0) var sign = (asIntbytes >> 31) == 0 ? 1 : -1; // Comparison with 0x80000000 fails on 32 bit systems! var exponent = ((asIntbytes >> 23) & 0xFF) - 127; var significand = (asIntbytes & ~(-1 << 23)); if (exponent === 128) return null; << 23)); if (exponent == 128) { // Some systems might have issues with NaN and POSITIVE_INFINITY, e.g. JSON parsing in GoLang // return sign * ((significand) ? Number.NaN : Number.POSITIVE_INFINITY); return null; } if (exponent === -127) { if (significand === 0) return sign * 0.0; exponent = -126; significand /= (1 << 22); } else { significand = (significand | (1 << 23)) / (1 << 23); } return sign * significand * Math.pow(2, exponent); } function float32_BE(bytes, idx) { return float32FromInt(uint32_BEfloat32(bytes, idx)); } /** * TTN decoder function. */ function Decoder(bytes, port) { var vals = {}; if( port == 20 ){ if (bytes.length==5) { // Pressure Probe without temperature sensor and Bridges internal Temperature vals["error"] = !!(bytes[0]&0x80); vals["pressure"] = int16_BE(bytes, 1)/1000; vals["temperature"] = int16_BE(bytes, 3); } else if (bytes.length==7) { vals["error"] = !!(bytes[0]&0x80); vals["pressure"] = int16_BE(bytes, 1)/1000; vals["temperature"] = int16_BE(bytes, 3); vals["voltage"] = uint16_BE(bytes, 5) / 1000; } else if (bytes.length==9) { vals["error"] = !!(bytes[0]&0x80); // pressure in mH2O vals["pressure"] = float32_BE(bytes, 1); // temperature in Degree Celsius vals["temperature"] = float32_BE(bytes, 5); } else if (bytes.length==11) { vals["error"] = !!(bytes[0]&0x80); // pressure in mH2O or Bar, depending on probe type vals["pressure"] = float32_BE(bytes, 1); // temperature in Degree Celsius vals["temperature"] = float32_BE(bytes, 5); vals["voltage"] = uint16_BE(bytes, 9) / 1000; } } if (port === 64 && bytes.length == 13) { // status packet vals["Firmware Identifier"] = String.fromCharCode(bytes[0]) + String.fromCharCode(bytes[1]) + String.fromCharCode(bytes[2]); vals["FirmwareVersion"] = bytes[3] + '.' + bytes[4] + '.' + bytes[5]; vals["status"] = bytes[6]; vals["reboot reason"] = bytes[7]; vals["final words"] = bytes[8]; vals["voltage"] = uint16_BE(bytes,9)/1000.0 vals["temperature"] = int16_BE(bytes,11)/10.0; } return vals; } function NB_ParseModbusQuery(input){ vals = {}; for( var i = 0; i< input.d.batch.length; i++ ){ if (input.d.batch[i].cmd == "AQMAFgAC"){ vals["pressure"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3); } if (input.d.batch[i].cmd == "AQMAJgAC"){ vals["temperature"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3); } // else: keller if (input.d.batch[i].cmd == "AQMAAgAC"){ // convert to mH2O vals["pressure"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3)*10.197442889221; } if (input.d.batch[i].cmd == "AQMACAAC"){ vals["temperature"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3); } // vbat if (input.d.batch[i].cmd == "+gQABQAB"){ vals["vBat"] = int16_BE(bytes(atob(input.d.batch[i].rsp)),3)/1000.0; } // internal temperature if (input.d.batch[i].cmd == "+gQABAAB"){ vals["temperatureInt"] = int16_BE(bytes(atob(input.d.batch[i].rsp)),3); } } return vals; } /** * TTN V3 Wrapper */ function decodeUplink(input) { return { data: { values: Decoder(input.bytes, input.fPort) }, warnings: [], errors: [] }; } function NB_ParseDeviceQuery(input) { for (var key in input.d) { var v = input.d[key]; switch (key) { case "temperature": v = v / 10.0; Device.setProperty("device.temperature", v); continue; case "vbat": v = v / 1000.0; Device.setProperty("device.voltage", v); continue; } Device.setProperty("device." + key, v); } return null; } function NB_ParseConfigQuery(input) { for (var key in input.d) { Device.setConfig(key, input.d[key]); } return null; } function NB_ParseStatusQuery(input) { NB_ParseDeviceQuery(input); return null; } /** * ChirpStack decoder function. */ function Decode(fPort, bytes) { // wrap TTN Decoder: return Decoder(bytes, fPort); } /** * Lobaro Platform decoder function. */ function Parse(input) { if (input.i && input.d) { // NB-IoT var decoded = {}; decoded = input.d; decoded.address = input.i; decoded.fCnt = input.n; var query = input.q || "data"; switch (query) { case "config": return NB_ParseConfigQuery(input); case "device": return NB_ParseDeviceQuery(input); case "modbus": return NB_ParseModbusQuery(input); case "status": return NB_ParseStatusQuery(input); default: } return decoded; } var data = bytes(atob(input.data)); var port = input.fPort; return Decoder(data, port); } |
...