Table of Contents |
---|
Lobaro Pressure or Lobaro Pressure and Temperature Sensor
Lobaro Platform Device Type: Status colour Blue title lobaro-pegelsonde-hybrid
Select the correct sensor by checking the cable flag. The Pressure and Temperature sensor got a "P+T" marking.
Lobaro Pressure and Temperature Sensor | Lobaro Pressure Sensor | KELLER Series 26X | ||||
---|---|---|---|---|---|---|
Lobaro article: #3000625 | Lobaro article: | Lobaro article: #3000701 | ||||
|
| White=GND Black =+Vcc Blue=RS485+ Yellow=RS485- | ||||
Red = VCC, Green = GND, RS485A = Yellow, RS485B = Blue | ||||||
|
Lobaro Pressure and Temperature Sensor
To read out the pressure & temperature probe, the Hybrid Modbus Gateway must be configured as follows:
Parameter | Value | Comment |
---|---|---|
WAN | lorawan | For LoRaWAN OTAA usage. |
PlFmt | 5 | Sets the payload to a short format. |
MbCmd | 0 0/15 * * * *:R,9600,8N1:010300160002,010300260002,fa0400050001 |
The CRON Expressions can be adjusted to set time of sensor reading. |
PowerOnDelay | 3000 | Battery variant only. Sets time (in ms) between activating sensor power and reading value (time for sensor to be ready). |
Modbus Register Mapping
The probe is a Modbus slave with the following registers:
Modbus Command: <Slave Address (1)><Function (1)><Address (2)><Length (2)>
- Length = Register count -> 1 Register = 2 Bytes
Function
- 0x03 = Read Holding Register
- 0x04 = Read Input Register
- 0x06 = Write Holding Register
Address | Function | Bytes | Data Scope | Description |
---|---|---|---|---|
0x0000 | 0x03, 0x06 | 2 | 1-255 | Slave Address |
0x0001 | 0x03, 0x06 | 2 |
| Baud rate |
0x0002 | 0x03, 0x06 | 2 |
|
|
0x0003 | 0x03 | 2 |
| Pressure unit |
0x0004 | 0x03 | 2 |
| Decimal point stands for 0-4 digits |
0x0005 | 0x03 | 2 | 0-30 | Filtering Coefficient |
0x0016-0017 | 0x03 | 4 | 4 byte float | Measurement Pressure output value |
0x0018-0019 | 0x03, 0x06 | 4 | 4 byte float | Master variable of Pressure offset |
0x001A-001B | 0x03 | 4 | 4 byte float | Range minimum of Pressure Transmitter |
0x001C-001D | 0x03 | 4 | 4 byte float | Range maximum of Pressure Transmitter |
0x001E-001F | 0x03 | 4 | 4 byte float | Range minimum of Pressure Sensor |
0x0020-0021 | 0x03 | 4 | 4 byte float | Range maximum of Pressure Sensor |
0x0026-0027 | 0x03 | 4 | 4 byte float | Measurement Temperature output value |
0x00A6-00A7 | 0x06 | 4 | 4 byte float | Zero Clearing value of Pressure Transmitter |
0xFFFF | 0x06 | 2 |
| Save data to user area |
0xFFFC | 0x06 | 2 |
| Restore to factory status (user settings and calibration data) |
Data Uplink (Port 20)
Code Block |
---|
Bytes | 0 . | 1 . 2 . 3 . 4 . | 5 . 6 . 7 . 8 . | 9 . 10 . | ------+--------+-----------------+-----------------+----------+ Field | Header | Pressure | Temperature | Voltage | |
All values are encoded big-endian
Field | Type | Value |
---|---|---|
Header | uint8 | 0x00 on success, 0x80 if an error occurred |
Pressure | float32 | Pressure in mH2O , ffffffff on error. |
Temperature | float32 | Temperature in |
Voltage | uint16 | Voltage in mV, ffff on error |
010300160002
Example
Code Block |
---|
# Example of a successful measurement '003d94ce4541b7a5120e2a' '00' -> Successful readout '3d94ce45' -> 0.073 mH2O '41b7a512' -> 22.96 °C '0e2a' -> 3626 mV / 3.626 V # Example '80ffffffffffffffff' '80' -> An error occurred. 'ffffffff' -> Pressure could not be read. 'ffffffff' -> Temperature could not be read. 'ffff' -> Voltage could not be read. |
Reference Parser
see below
Lobaro Pressure Sensor
Reading from the Lobaro Pressure Sensor using the Hybrid Gateway can be done by setting the following parameters in the configuration:
Parameter | Value | Comment |
---|---|---|
WAN | lorawan | For LoRaWAN OTAA usage. |
PlFmt | 5 | Sets the payload to a short format. |
MbCmd | 0 0/15 * * * *:R,9600,8N1:010300040001,fa0400040001,fa0400050001 |
The CRON Expressions can be adjusted to set time of sensor reading. |
PowerOnDelay | 3000 | Battery variant only. Sets time (in ms) between activating sensor power and reading value (time for sensor to be ready). |
Modbus Register Mapping
The probe is a Modbus slave with the following registers:
Modbus Command: <Slave Address (1)><Function (1)><Address (2)><Length (2)>
- Length = Register count -> 1 Register = 2 Bytes
Function
- 0x03 = Read Holding Register
- 0x06 = Write Holding Register
Address | Function | Bytes | Data Scope | Description |
---|---|---|---|---|
0x0000 | 0x03, 0x06 | 2 | 1-255 | Slave Address |
0x0001 | 0x03, 0x06 | 2 |
| Baud rate |
0x0003 | 0x03 | 2 |
| Decimal point stands for 0-3 digits |
0x0002 | 0x03 | 2 |
| Pressure unit |
0x0004 | 0x03 | 2 | -32768-32767 | Measurement output value |
0x0005 | 0x03 | 2 | -32768-32767 | Zero point of transmitter range |
0x0006 | 0x03 | 2 | -32768-32767 | Full point of transmitter range |
0x000c | 0x03, 0x06 | 2 | -32768-32767 | Zero point offset value, generally factory sets as 0 |
0x000F | 0x06 | 2 |
| |
0x0010 | 0x06 | 2 |
|
Data Uplink LoRaWAN (Port 20)
Code Block |
---|
Bytes | 0 . | 1 . 2 . | 3 . 4 . | 5 . 6 . | ------+--------+----------+-------------+---------| Field | Header | Pressure | Temperature | Voltage | |
All values are encoded big-endian
Field | Type | Value |
---|---|---|
Header | uint8 | 0x00 on success, 0x80 if an error occurred |
Pressure | int16BE | Pressure in mmH2O |
Temperature | int16BE | Temperature in °C inside Bridge |
Voltage | uint16BE | Voltage in mV, ffff on error |
Example
Code Block |
---|
# Example of a successful measurement '000211001a0e2a' '00' -> Successful readout '0211' -> 529 -> 0.529 mH2O '001a' -> 26 -> 26°C (inside Box) '0e2a' -> 3626 -> 3626 mV / 3.626 V |
Keller PR26X
Configuration
Connected pressure sensor probe from Keller Druckmesstechnik PR26X series.
Parameter | Value | Comment |
---|---|---|
WAN | lorawan | For LoRaWAN OTAA usage. |
PlFmt | 5 | Sets the payload to a short format. |
MbCmd | 0 0 * * * *:R,9600,8N1:010300020002,010300080002,FA0400050001 | Reads four Registers: 2 + 3 (Float, Pressure in Bar) and 8 + 9 (Float, Probe Temperature) + Device battery voltage |
PowerOnDelay | 1500 | Battery variant only. Sets time (in ms) between activating sensor power and reading value (time for sensor to be ready). |
Example Modbus response
Hex to float converter: https://gregstoll.com/~gregstoll/floattohex/
Pressure (0x3f75f07b):
Temperature (0x41b5c079):
Data Uplink (Port 20)
Code Block |
---|
Bytes | 0 . | 1 . 2 . 3 . 4 . | 5 . 6 . 7 . 8 . | 9 . 10 . | ------+--------+-----------------+-----------------+----------+ Field | Header | Pressure | Temperature | Voltage | |
All values are encoded big-endian
Field | Type | Value |
---|---|---|
Header | uint8 | 0x00 on success, 0x80 if an error occurred |
Pressure | float32 | Pressure in Bar , ffffffff on error. |
Temperature | float32 | Temperature in |
Voltage | uint16 | Voltage in mV, ffff on error |
Reference Parser (All variants, LoRaWAN only works with default config for MbCmd!)
Code Block | ||||||
---|---|---|---|---|---|---|
| ||||||
/** * Parser for Lobaro Pressure Probe via LoRaWAN (hybrid gateway). * Usable for Pressure Probe as or with Presure+Temperature Probe. * Works with TTN, ChirpStack, or the Lobaro Platform. */ function signed(val, bits) { // max positive value possible for signed int with bits: var mx = Math.pow(2, bits-1); if (val < mx) { // is positive value, just return return val; } else { // is negative value, convert to neg: return val - (2 * mx); } } function int16_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return signed(bytes[0] << 8 | bytes[1] << 0, 2*8); } function uint16_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return bytes[0] << 8 | bytes[1] << 0; } function uint32_BE(bytes, idx) { bytes = bytes.slice(idx || 0); return bytes[0] << 24 | bytes[1] << 16 | bytes[2] << 8 | bytes[3] << 0; } function float32FromInt(asInt) { var sign = (asInt >> 31) == 0 ? 1 : -1; var exponent = ((asInt >> 23) & 0xFF) - 127; var significand = (asInt & ~(-1 << 23)); if (exponent === 128) return null; // return sign * ((significand) ? Number.NaN : Number.POSITIVE_INFINITY); if (exponent === -127) { if (significand === 0) return sign * 0.0; exponent = -126; significand /= (1 << 22); } else { significand = (significand | (1 << 23)) / (1 << 23); } return sign * significand * Math.pow(2, exponent); } function float32_BE(bytes, idx) { return float32FromInt(uint32_BE(bytes, idx)); } /** * TTN decoder function. */ function Decoder(bytes, port) { var vals = {}; if( port == 20 ){ if (bytes.length==5) { // Pressure Probe without temperature sensor and Bridges internal Temperature vals["error"] = !!(bytes[0]&0x80); vals["pressure"] = int16_BE(bytes, 1)/1000; vals["temperature"] = int16_BE(bytes, 3); } else if (bytes.length==7) { vals["error"] = !!(bytes[0]&0x80); vals["pressure"] = int16_BE(bytes, 1)/1000; vals["temperature"] = int16_BE(bytes, 3); vals["voltage"] = uint16_BE(bytes, 5) / 1000; } else if (bytes.length==9) { vals["error"] = !!(bytes[0]&0x80); // pressure in mH2O vals["pressure"] = float32_BE(bytes, 1); // temperature in Degree Celsius vals["temperature"] = float32_BE(bytes, 5); } else if (bytes.length==11) { vals["error"] = !!(bytes[0]&0x80); // pressure in mH2O vals["pressure"] = float32_BE(bytes, 1); // temperature in Degree Celsius vals["temperature"] = float32_BE(bytes, 5); vals["voltage"] = uint16_BE(bytes, 9) / 1000; } } if (port === 64 && bytes.length == 13) { // status packet vals["Firmware Identifier"] = String.fromCharCode(bytes[0]) + String.fromCharCode(bytes[1]) + String.fromCharCode(bytes[2]); vals["FirmwareVersion"] = bytes[3] + '.' + bytes[4] + '.' + bytes[5]; vals["status"] = bytes[6]; vals["reboot reason"] = bytes[7]; vals["final words"] = bytes[8]; vals["voltage"] = uint16_BE(bytes,9)/1000.0 vals["temperature"] = int16_BE(bytes,11)/10.0; } return vals; } function NB_ParseModbusQuery(input){ vals = {}; for( var i = 0; i< input.d.batch.length; i++ ){ if (input.d.batch[i].cmd == "AQMAFgAC"){ vals["pressure"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3); } if (input.d.batch[i].cmd == "AQMAJgAC"){ vals["temperature"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3); } // else: keller if (input.d.batch[i].cmd == "AQMAAgAC"){ // convert to mH2O vals["pressure"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3)*10.197442889221; } if (input.d.batch[i].cmd == "AQMACAAC"){ vals["temperature"] = float32_BE(bytes(atob(input.d.batch[i].rsp)),3); } // vbat if (input.d.batch[i].cmd == "+gQABQAB"){ vals["vBat"] = int16_BE(bytes(atob(input.d.batch[i].rsp)),3)/1000.0; } // internal temperature if (input.d.batch[i].cmd == "+gQABAAB"){ vals["temperatureInt"] = int16_BE(bytes(atob(input.d.batch[i].rsp)),3); } } return vals; } /** * TTN V3 Wrapper */ function decodeUplink(input) { return { data: { values: Decoder(input.bytes, input.fPort) }, warnings: [], errors: [] }; } function NB_ParseDeviceQuery(input) { for (var key in input.d) { var v = input.d[key]; switch (key) { case "temperature": v = v / 10.0; Device.setProperty("device.temperature", v); continue; case "vbat": v = v / 1000.0; Device.setProperty("device.voltage", v); continue; } Device.setProperty("device." + key, v); } return null; } function NB_ParseConfigQuery(input) { for (var key in input.d) { Device.setConfig(key, input.d[key]); } return null; } function NB_ParseStatusQuery(input) { NB_ParseDeviceQuery(input); return null; } /** * ChirpStack decoder function. */ function Decode(fPort, bytes) { // wrap TTN Decoder: return Decoder(bytes, fPort); } /** * Lobaro Platform decoder function. */ function Parse(input) { if (input.i && input.d) { // NB-IoT var decoded = {}; decoded = input.d; decoded.address = input.i; decoded.fCnt = input.n; var query = input.q || "data"; switch (query) { case "config": return NB_ParseConfigQuery(input); case "device": return NB_ParseDeviceQuery(input); case "modbus": return NB_ParseModbusQuery(input); case "status": return NB_ParseStatusQuery(input); default: } return decoded; } var data = bytes(atob(input.data)); var port = input.fPort; return Decoder(data, port); } |