...
Expand |
---|
|
Reference decoderThis is a decoder written in JavaScript that can be used to parse the device's LoRaWAN messages. It can be used as is in The Things Network. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | function readVersion(bytes) {
if (bytes.length<3) {
return null ;
}
return "v" + bytes[0] + "." + bytes[1] + "." + bytes[2];
}
function int40_BE(bytes, idx) {
bytes = bytes.slice(idx || 0);
return bytes[0] << 32 |
bytes[1] << 24 | bytes[2] << 16 | bytes[3] << 8 | bytes[4] << 0;
}
function int16_BE(bytes, idx) {
bytes = bytes.slice(idx || 0);
return bytes[0] << 8 | bytes[1] << 0;
}
function uint16_BE(bytes, idx) {
bytes = bytes.slice(idx || 0);
return bytes[0] << 8 | bytes[1] << 0;
}
function port1(bytes) {
return {
"port" :1,
"version" :readVersion(bytes),
"flags" :bytes[3],
"temp" : int16_BE(bytes, 4) / 10,
"vBat" : int16_BE(bytes, 6) / 1000,
"timestamp" : int40_BE(bytes, 8),
"operationMode" : bytes[13],
"noData" : !!(bytes[3] & 0x01)
};
}
function port2(bytes) {
var regs = [];
if (bytes.length > 5) {
var b = bytes.slice(5);
while (b.length>=4) {
var r = {
"device" :b[0],
"register" :int16_BE(b, 1),
"count" :b[3] & 0x3f,
"error" :!!(b[3]>>7),
"data" : null
};
var dataLen = r[ "count" ]*2;
if (b.length >= dataLen+4) {
r[ "data" ] = b.slice(4, 4 + dataLen);
}
regs.push(r);
b = b.slice(4+dataLen);
}
}
return {
"port" :2,
"timestamp" : int40_BE(bytes, 0),
"registers" : regs
};
}
function modbusErrorString(code) {
switch (code) {
case 1:
return "Illegal Function" ;
case 2:
return "Illegal Data Address" ;
case 3:
return "Illegal Data Value" ;
case 4:
return "Slave Device Failure" ;
case 5:
return "Acknowledge" ;
case 6:
return "Slave Device Busy" ;
case 7:
return "Negative Acknowledge" ;
case 8:
return "Memory Parity Error" ;
case 10:
return "Gateway Path Unavailable" ;
case 11:
return "Gateway Target Device Failed to Respond" ;
default :
return "Unknown error code" ;
}
}
function parseModbusPayloadRegisters(payload) {
if (payload.length < 1) {
return null ;
}
var byteCnt = payload[0];
if (payload.length !== byteCnt + 1) {
return null ;
}
var vals = [];
for ( var i=0; i<byteCnt; i+=2) {
vals.push([+payload[i+1], +payload[i+2]])
}
return vals;
}
function parseModbusResponse(raw) {
var resp = {};
if (raw.length >= 6) {
var fun = raw[1] & 0xf;
var error = !!(raw[1] & 0x80);
var rawResp = raw.slice(0, raw.length - 3);
resp[ "slave" ] = raw[0];
resp[ "function" ] = fun;
resp[ "error" ] = error;
resp[ "start" ] = uint16_BE(raw, raw.length - 3);
resp[ "cnt" ] = raw[raw.length - 1];
resp[ "raw" ] = rawResp;
if (error) {
resp[ "errorCode" ] = raw[2];
resp[ "errorText" ] = modbusErrorString(raw[2]);
} else {
resp[ "values" ] = parseModbusPayloadRegisters(rawResp.slice(2))
}
}
return resp;
}
function FullResponses(bytes, port) {
var timestamp = int40_BE(bytes);
var pos = 5;
var resps = [];
while (pos < bytes.length) {
var respLen = bytes[pos++];
if (bytes.length >= pos + respLen) {
var rawResponse = bytes.slice(pos, pos + respLen);
resps.push(parseModbusResponse(rawResponse));
pos += respLen;
} else {
break ;
}
}
return {
"port" : port,
"timestamp" : timestamp,
"responses" : resps
};
}
function bin2String(array) {
var result = "" ;
for ( var i = 0; i < array.length; i++) {
result += String.fromCharCode(array[i]);
}
return result;
}
function ConfigResponse(data) {
var t = bin2String(data);
return {
"response" : t,
"error" : (t.length === 0) || (t[0] === '!' )
}
}
function Decoder(bytes, port) {
switch (port) {
case 1:
return port1(bytes);
case 2:
return port2(bytes);
case 3:
case 4:
return FullResponses(bytes, port);
case 5:
return {};
case 6:
return {};
case 7:
return {};
case 128:
return ConfigResponse(bytes);
}
return { "error" : "invalid port" , "port" :port};
}
function Decode(fPort, bytes) {
return Decoder(bytes, fPort);
}
function Parse(input) {
var data = bytes(atob(input.data));
var port = input.fPort;
var fcnt = input.fCnt;
var vals = Decoder(data, port);
vals[ "port" ] = port;
vals[ "data" ] = data;
vals[ "fnct" ] = fcnt;
var lastFcnt = Device.getProperty( "lastFcnt" );
vals[ "reset" ] = fcnt <= lastFcnt;
Device.setProperty( "lastFcnt" , fcnt);
return vals;
}
|
|
The timestamp in the message is the wakeup time when the device was activated by the cron expression in MbCron
(using the devices internal clock), so all Uplinks from a single activation will have the same Timestamp. The Modbus Response in the message in addition with the start register/coil and the register/coil count makes it possible to know which registers/coils where exactly read/written, what kind they were, and the address of the device. For Modbus Commands that do not have a register/coil count (like function 5, forcing a single coil), or for those that do not contain a start register/coil (e.g. funtion 7, reading exception status), the contents of the additional fields start register
and/or count
are undefined. The payload format used only a single byte for the count value, so if you are reading/writing more than 255 coils, the higher byte will be cut off.
The Bridge puts as many responses as in one message as possible (without changing the order of responses and respecting the maximal message size of the current Spreading Factor). If the responses do not fit into a single message it will upload as many messages as needed. When a single response is too long to fit in a message, the response will be split up over multiple messages and will need to be reassembled in the backend. See Split Messages Hybrid Modbus Gateway for instructions on how to do that and how to prevent splitting.
...