
LoRaWAN Modbus Gateway
The Lobaro LoRaWAN Modbus Gateway is a with integrated LoRaWAN Network LoRaWAN Gateway
Server .providing sensor data via Modbus

Hardware Components

LoRaWAN Gateway

IMST Version RAK Version

Currently not available

LoRaWAN
Connectivity: LAN
Order number: 8000101
Type: LOB-GW-MODBUS-LW-IMST

New Version based on RAK Wireless

LoRaWAN
Connectivity: LTE / LAN / WLAN
Order number: 8000202
Type: LOB-GW-MODBUS-LW-RAK

USB-Modbus Adapter

Software Components

Chirpstack Network Server
Semtech Packet Forwarder
Chirpstack Gateway Bridge
Chirpstack Network Server

Hardware Components
Software Components
Remote access

SSH Access
Management UI
Chirpstack

SD Card write protection
Lobaro Modbus Server
Weitere Services

Debugging
Configuration file

Register
Types

Send Fixed Downlinks
Send Variable
Downlinks

Gateway administration
Change password
Change IP address

IMST
RAK

Chirpstack Application Server
Postgres
Redis

Lobaro Modbus Server

Usually you will not need to change anything inside the Chirpstack Application Server. All devices are
managed by the Lobaro Modbus Server.

Remote access

Per default the gateway obtains the IP address via DHCP. If configured with a fixed IP address, the
gateway has a label with the configured IP address and subnet.

SSH Access

The gateway can be accessed via SSH on port 22. Default login credentials are:

User: pi
Password: lobarogw
IP: DHCP with fallback to 192.168.0.1/24 (IMST) or 192.168.0.1/24 (RAK)

On RAK with latest image also possible via WLAN AP:
Default SSID "RAKMBG_XXYY" (XX and YY last bytes of WLAN adapter
MAC) and password "lobarowireless", RAK IP 192.168.230.1

Management UI

IMST version: http://192.168.100.26:8081/
RAK version:

LAN: http://192.168.0.1:8081/
WLAN: http://192.168.230.1:8081/

User & Password: Same as Chirpstack

Chirpstack

http://192.168.0.1:8080/ or IP from DHCP
User: admin
Password: lobarogw

SD Card write protection

To change any filed on the SD Card (including all config files) you need to execute the script:

~/enableWriteAccess.sh

To disable write access, restart the gateway or execute:

~/disableWriteAccess.sh

Lobaro Modbus Server

The Lobaro Modbus Server () is responsible for fetching data from the local lobaro-modbus-server
LoRaWAN Network Server and provides received data via modbus.

To use WinSCP with the user "pi" the files need write access:

Write protection on the SD card was removed in current firmware releases

vim can be used to edit files.

http://192.168.100.26:8081
http://192.168.0.1:8081/
http://192.168.230.1:8081/
http://192.168.0.1:8080/

sudo chmod o+wr /etc/lobaro-modbus-server/lobaro-modbus-server.yml

Open or change configuration of the Lobaro Modbus Server:

sudo vim /etc/lobaro-modbus-server/lobaro-modbus-server.yml

After editing the configuration must be restarted: lobaro-modbus-server

sudo systemctl restart lobaro-modbus-server

Check the status with

sudo systemctl status lobaro-modbus-server

Check the logs with

sudo journalctl --no-pager -e -u lobaro-modbus-server

Weitere Services

There are other services running to operate the gateway.

lobaro-modbus-server
redis-server
postgresql / postgresql@9.6-main.service
mosquitto
IoTSemtech
chirpstack-gateway-bridge
chirpstack-network-server
chirpstack-application-server

Useful commands:

Status:
sudo systemctl status <service-name>
Start / Stop / Restart
sudo systemctl start <service-name>
sudo systemctl stop <service-name>
sudo systemctl restart <service-name>
Logs
sudo journalctl --no-pager -e -u <service-name>

Debugging

Beside checking the logs, you can also analyze the files in the (see config). dataDir

There are two files that help writing the config and checking the results.

device-data.json - contains raw json received from Chirpstack. Can be used to verify mappi
configuration.ng[].register.value

register-map.json - contains all register values provided via modbus. All values are
formatted as . int

Example : device-data.json

{
 "0000000000000000-1": {
 "adr": true,
 "applicationID": "1",
 "applicationName": "default",
 "data": "AAMEAOQN1g==",
 "devEUI": "0000000000000000",
 "deviceName": "0000000000000000",
 "fCnt": 1,
 "fPort": 1,
 "object": {
 "temp": 22.8,
 "vBat": 3.542,
 "version": "v0.3.4"
 },
 "rxInfo": [
 {
 "gatewayID": "0000000000000000",
 "loRaSNR": 8.8,
 "location": {
 "altitude": 0,
 "latitude": 0,
 "longitude": 0
 },
 "name": "default",
 "rssi": -36,
 "uplinkID": "ce2e086a-d747-4813-9428-b7a4a45abcc8"
 }
],
 "txInfo": {
 "dr": 0,
 "frequency": 868300000
 }
 }
}

Example : register-map.json

{
 "Register": {
 "100": {
 "Val": 0,
 "Type": 1,
 "UpdatedAt": "2020-02-07T13:44:03.39750918Z"
 }
 }
}

Configuration file

Register Types

For the following types are valid:mapping.[device].register.type

"type" Parameter Register Count

int16 1

uint16 1

uint32 2

int32 2

float32 2

downlink 1

Example Configuration

The application stores persistent data at this path
dataDir: /mnt/ssd/var/data/lobaro-modbus-server/

Chipstack configuration. Required to manage configured LoRaWAN devices.
chirpstack:
 server: http://localhost:8080
 broker: localhost
 appId: 1
 username: admin
 password: admin

Modbus configuration.
<v1.2.0: Serial mode is fixed at: 8 Data bits, Even Parity, 1 Stop bit
(8E1)
modbus:
 baud: 19200
 dataBits: 8 # since v1.2.0
 parity: "even" # no, even (default), odd - since v1.2.0
 stopBits: 1 # 1 (default), 1.5, 2 - since v1.2.0
 slaveId: 1
 port: /dev/ttyUSB0

Mapping from LoRaWAN Sensors to Modbus Registers
mapping:
 # LoRaWAN Sensor parameters
 - devEUI: 0000000000000000
 appKey: 00000000000000000000000000000000
 # Chirpstack Device Profile to use. Includes the Payload Parser.
 devProfile: lobaro-environment
 devName: "name of device in chirpstack"
 # Register mapping for this device
 # One device can fill any number of registers.
 # The server will check for overlapping definitions on start.
 register:
 # Modbus Address (do NOT prefix with 0, else it's octal)
 - addr: 1
 # The value to be mapped.
 # Usually the value is taken from the Chirpstack Parser result JSON
 # and can be selected via JSON Path as handled by https://github.
com/tidwall/gjson
 # There are some special values:
 # @age - age of last update in minutes (for any register of this
device)
 # @now - Current time as Unix Timestamp
 value: "@age" # age of last update in minutes (for any register of
this device)
 # Data type of the value. Default byte order is LittleEndian
 # Supported types are: int16, uint16 (more will come in future
versions)
 type: int16
 # The value is only for messages on the specified port, 0 for
"every". Default: 0
 port: 0
 # The register value is multiplied with the given factor, 0 is
irgnored. Default: 1
 factor: 1

 - addr: 2
 port: 1 # status packet
 value: "object.vBat"
 type: int16
 factor: 1000
 - addr: 3
 port: 2

 value: "object.temperature"
 type: int16
 factor: 10
 - addr: 4
 port: 2
 value: "object.humidity"
 type: int16
 factor: 10
 - addr: 5
 port: 2
 value: "object.pressure"
 type: int16
 factor: 10
 - addr: 6
 port: 2
 value: "rxInfo.0.rssi"
 type: int16
 - addr: 7
 port: 2
 value: "txInfo.dr"
 type: int16
 - addr: 8
 port: 128
 value: "0x0102" # value to be sent as downlink, either as
hex (prefixed with "0x") or base64 string
 type: downlink

 # A second device as example
 - devEUI: 0000000000000000
 appKey: 00000000000000000000000000000000
 devProfile: lobaro-one-wire
 register:
 - addr: 100
 value: "@age" # age of last update in minutes (for any register of
this device)
 type: int16
 - addr: 101
 port: 1 # status packet
 value: "object.vBat"
 type: int16
 factor: 1000
 - addr: 102
 port: 2
 value: "object.sensors.0.temp"
 type: int16
 factor: 10
 - addr: 103
 port: 2
 value: "rxInfo.0.rssi"
 type: int16
 - addr: 104
 port: 2
 value: "txInfo.dr"
 type: int16
 - addr: 105
 port: 128
 value: "dGVzdF9kb3dubGluaw==" # value to be sent as
downlink, either as hex (prefixed with "0x") or base64 string
 type: downlink
 - addr: 106
 type: downlink-var
 len: 5 # 107-111

Send Fixed Downlinks

Send a predefined downlink packet to a configures port to a LoRaWAN device with a single write to a
modbus register.

1.
a.

2.

3.

a.

Configuration

mapping:
 register:
 - addr: 8
 port: 128
 value: "0x0102" # value to be sent as downlink, either as hex
(prefixed with "0x") or base64 string
 type: downlink

Set the register to type "downlink" to allow sending the "value" via LoRaWAN to the deivce.

With the example above:

Write any value to modbus register with address 8
A downlink "0x0102" will be queued on port 128
The register will keep the written value in case of success. In case of error the value will be 0.

Send Variable Downlinks

Send variable downlinks to a variable ports. Payload must be written to a set of defined modbus registers
per LoRaWAN Device.

First, specify a new register under the device of your choice with type . Then, set the downlink-var
following options for it:

Len: How many modbus registers (following this register) should be assigned as storage for the
variable downlink.
Confirm: Whether to ask the device for acknowledgement of reception of the sent downlink (fa

or)lse true

Configuration

mapping:
 register:
 - addr: 123
 type: downlink-var
 len: 7 # storing in registers 124-130
 confirm: true

The resulting structure :at the configured address addr will be

Downlink Trigger Downlink data ... Downlink data

addr addr+1 ... addr+len

After () :re- starting the modbus server to apply the new config

Write your desired downlink (bytes) to the downlink data registers, starting at . addr+1
You can only write 2 * bytes at maximum! Extra bytes will be discarded. len

Optional: Write 0x0000 to the downlink trigger register at to clear the register (no downlink addr
will be queued!)
Write to the downlink trigger register at , using 1 byte each for the <port><length> addr
designated FPort and downlink length . in bytes

Example: Send downlink to port 128 (), 10 () bytes long: Write value 0x80 0x0A 0x800A
to register . addr

To check if the downlink was successful, read the trigger register and check its value:

Register value = <port><length>: The downlink was successfully queued.
Register value = 0: The downlink couldn't be queued for your device. Check the server log for
more details.

Chirpstack
The gateway uses a local Chirpstack server. Access management interface on https://<gw-ip>:

.8080

Documentation can be found on . Chripstack.io

For each type of device the needs to reference a Device Profile. See: lobaro-modbus-server Chirpst
. The Device Profile of each LoRaWAN device must be referenced by its ack Device Profile Management

name or UUID in the config file. lobaro-modbus-server.yml

Gateway administration

When ever any file on the SD-Card need to change make sure to execute

~/enableWriteAccess.sh

Change password

Login via SSH (see:) Remote access

passwd

Change IP address

IMST

sudo vim /etc/network/interfaces

pi@LoRaGateway:~ $ cat /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)

Please note that this file is written to be used with dhcpcd
For static IP, consult /etc/dhcpcd.conf and 'man dhcpcd.conf'

Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d

auto lo
iface lo inet loopback

DHCP (Default, comment line to disable DHCP)
iface eth0 inet manual

Fixed IP (Uncomment to enable or use /etc/dhcpcd.conf)
#auto eth0
#iface eth0 inet static
address 10.0.0.42/24
gateway 10.0.0.1

RAK

sudo vim /etc/dhcpcd.conf

Edit last lines to:

https://chirpstack.io/
https://www.chirpstack.io/application-server/use/device-profiles/
https://www.chirpstack.io/application-server/use/device-profiles/

RAK_eth0_IP
profile static_eth0
static ip_address=192.168.0.1/24
static routers=192.168.0.1

interface eth0
fallback static_eth0

	LoRaWAN Modbus Gateway

