
EDL21 electricity meter bridge (LoRaWAN)

The EDL21 over LoRaWAN bridge is a device that can be used to readout modern utility meters with
standardized infrared "INFO" interface.

These type of meters are called in Germany to be "EDL21"-compatible - hence the name. The meter
outputs over its infrared "INFO" interface a serial protocol conforming to the Smart Meter Language

(SML). This interface is intended to be used by end-users and for billing purposes of Protocol 1.04 not
the electricity supplier. The read information normally contains the current consumption values of the
meter and gets interpreted and forwarded by the EDL21 bridge via a LoRaWAN network to web based
applications interested in further processing this data.

Top Features

 LoRaWAN 1.0.x and 1.1 network servers supported

 LoRaWAN time synchronisation

 Configuration via USB or remotely via LoRaWAN downlink

 Compatible with many electrical utility meters

 Configure up to 25 Obis Codes to be read

 RGB Status LED

 Variant with external power-supply available on request

 Separation of infrared readout head and LoRaWAN antenna possible

Compatible utility meters

Any meter that adheres to the standard can be read. The following list contains meters that we
successfully tested.

Electricity meter Manufacturer

DTZ541-ZEBA Holley

LK13 series Logarex

OpenWay® 3.HZ iTron

Top Features
Compatible utility meters
Product variants

Quickstart
Configuration

LoRaWAN
Operation

LED blinking patterns
Payload

Payload Format 1 (default,
Port 3, with exponent)

Multiple messages
Payload Format 2 (extended,
Port 4, with timestamp)
Payload Format 0 (legacy,
Port 2, without exponent)

Reference decoder
Example parser result

Appendices
Technical characteristics
Disposal / WEEE / Entsorgung
CE Declaration of Conformity

Warning

Older meters with "infrared pulse" output are compatible to the Lobaro EDL21 bridge. not
Please check our list of to make sure it is equipped with the correct compatible meters
interface.

Consider using the latest firmware on your hardware

See available firmware downloads

https://de.wikipedia.org/wiki/Smart_Message_Language
https://de.wikipedia.org/wiki/Smart_Message_Language
https://doc.lobaro.com/pages/viewpage.action?pageId=4195174

SGM-C4 series efr

SGM-D series efr

eHZ-K series EMH

mMe4.0 series EMH

ED300 series EMH

eBZD series EMH

E320 Landis+Gyr

MT681 ISKRA

Product variants

EDL21-LoRaWAN Bridge (universal head, XH battery connector, int. Ant.), Order
number: 8000091

Alternative IEC 62056-21 protocol

On request we offer also the integration of electricity meters using the D0 interface conforming
to . This interface is not compatible to the SML protocol. Please contact us if you IEC 62056-21
need an offer for a custom firmware supporting your meter of interest.

1.
2.

3.
4.
5.

6.
7.
8.

9.

Quickstart
Connect to the device with the using the Lobaro Tool Lobaro Config Adapter
Under Configuration click "Reload Config" and change the fields ReadCron and ObisCode as
you need followed by clicking on "Write to Device", here you can see a configuration example.

Register the device in your LoRaWAN network
Connect ER34614 3.6V D-cell Battery via XH connector / Connect external powersupply
If not connected to anything the red LED will start blinking as long as no data is received, after 1
minute it will sleep for 15 seconds after every 5 retries
Tighten the screws and install the bridge beside your electric meter
Place the EDL21 opto head on the "Info" interface
As soon as the EDL21 receives data its green LED will light up for 5 seconds, when connected
to a LoRa Network its blue LED will light up for 5 seconds
Check the sent data (port 3), if payload is zero the EDL21 was not able to read data, recheck
proper alignment

Configuration
The configuration is done using and the Lobaro USB PC adapter. Lobaro Maintenance Tool

LoRaWAN

The connection to the LoRaWAN network is defined by multiple configuration parameters. This need to
be set according to your LoRaWAN network and the way your device is supposed to be attached to it, or
the device will not be able to send any data.

Name Description Type Values

OTAA Activation: OTAA or ABP bool true= use OTAA, = use false
ABP

Customization Options

The product variant shown above is the variant for use with a ER34614 3.6V D-cell standard
Battery connected over a XH connector.

Other power supply options & housing are available on request

External antenna
External power-supply
NB-IoT instead of LoRaWAN
Different infrared data formats other than SML

Contact us via if you need our offer for a special variant. support@lobaro.de

Downlink Configuration

For a detailed introduction into how this values need to be configured, please refer to the
chapter in our LoRaWAN background article. LoRaWAN configuration

https://doc.lobaro.com/display/PUB/Lobaro+Maintenance+Tool
https://doc.lobaro.com/display/PUB/USB+Config+Adapter
https://doc.lobaro.com/display/PUB/Lobaro+Maintenance+Tool
https://doc.lobaro.com/pages/viewpage.action?pageId=4194864
mailto:support@lobaro.de
https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-LoRaWANConfiguration

DevEUI DevEUI used to identify the Device byte[8] e.g. 0123456789abcdef

JoinEUI Used for OTAA (called AppEUI in v1.0) byte[8] e.g. 0123456789abcdef

AppKey Key used for OTAA (v1.0 and v1.1) byte
[16]

NwkKey Key used for OTAA (v1.1 only) byte
[16]

SF Initial / maximum Spreading Factor int 7 - 12

ADR Use Adaptive Data Rate bool true= use ADR, = don't false

TimeSync Days after which to sync time int days, =don't sync time 0

RndDelay Random delay before sending int max seconds

RemoteConf Not supported by this firmware bool false=deactivate

LostReboot Days without downlink before reboot (triggers
downlinks)

int days, =don't reboot 0

Operation

Configuration values defining the behaviour of the device.

name description example value

ReadCron Cron expression defining when to read 0 0/15 * * * * for every
15 minutes

ObisCode Comma separated list of ObisCodes to select a subset
of the available information

1-0:1.7.255*255 =
Leistung (Momentan)

PayloadF
ormat

Format used for data upload (include timestamps or not) 1=no timestamp, =include 2
timestamp

See also our and our . Introduction to Cron expressions Introduction to Obis Codes

LED blinking patterns
The following pattery are explained in the order in which they appear after initial power on / reset of the
device.

color duration description

red/green
/blue

300ms each initial pattern after reset

red/green 1s NEW in 0.3.2: single readout success/failure before OTAA join

red short,
blinking

trying to receive meter optical data for the first time after OTAA
join

green 5 seconds successfully received meter optical data

blue 5 seconds LoRaWAN network join

blue short sending LoRaWAN data uplink

off - low-power mode until next sendout cycle

As you can see by this the device will start the LoRaWAN join only after receiving optical data at least
once.

Payload Format Status Packet (Port 1)

Once per day a status packet will be sent. It contains basic information about the device. The Battery
Voltage is transmitted in 1/1000 V and the temperature in 1/10 °C. Both are in Big Endian byte order.

Version Major Version Minor Version Patch Flags Battery Voltage Temperature

https://doc.lobaro.com/display/PUB/CRON+Expressions
https://doc.lobaro.com/display/PUB/OBIS-Codes

1 byte 1 byte 1 byte 1 byte 2 byte 2byte

unsigned unsigned unsigned unsigned unsigned signed

Payload

Payload Format 1 (default, Port 3, with exponent)

This Format is used, when the configuration parameter is set to (which is the default PayloadFormat 1
value).

The payload consists of multiple entries, one entry per OBIS code given in the configuration. Each entry
follows the following structure:

OBISCode (hex) length of value (n) value exponent

6 bytes 1 byte n bytes, LSB first 1 byte (signed)

Example packet: 0100010800FE08FF01000000000000 ff 0100010800FE08FF02000000000000 02

Entry 1:

OBISCode (hex) length of value (n) value exponent

0100010800FE 08 FF01000000000000 ff

1-0:1.8.0*254 8 511 -1

Value = 511 * 10^-1 = 51.1

Entry 2:

OBISCode (hex) length of value (n) value exponent

0100010800FE 08 FF02000000000000 02

1-0:1.8.0*254 8 767 2

Value = 767 * 10^2 = 76700

Multiple messages

The Bridge puts as many values in a single data message as possible (respecting the current Spreading
Factor). When it cannot fit all values in a single message, it will send multiple data messages until all
values are uploaded. It will never split a single value. Since every value is prefixed with the Obis code,
the parser can easily assign values to Obis codes.

Payload Format 2 (extended, Port 4, with timestamp)

This Format is used, when the configuration parameter is set to .PayloadFormat 2

The Obis Codes and Data Values are transmitted as in Payload Format 1, but each uploaded LoRaWAN-
Message with data is prefixed with a 5 byte Timestamp, indicating when the values where requested
from the attached meter. This allows for a more precise timing information then using the time of
reception, as the upload can be delayed quite heavily due to our random delay feature and potentially
due to duty cycle restrictions. The timestamp also makes it easy to reassociate values from multiple
uplinks to a single reading, when multiple uplinks must be used to upload all values. If a readout is spilt
over multiple uplinks (because of LoRaWAN's length restrictions), every uplink from that reading will
have the same timestamp (which is the time of requesting the values from the meter).

The Timestamp is sent as a encoded as a bigendian signed 40-bit number.UNIX-Timestamp

https://en.wikipedia.org/wiki/Unix_time

Payload Format 0 (legacy, Port 2, without exponent)

 This payload was used by previous versions of the firmware and is not supported in the current
version.

The payload consists of multiple entries, one entry per OBIS code given in the configuration. Each entry
follows the following structure:

OBISCode (hex) length of value (n) value

6 bytes 1 byte n bytes, LSB first

Example packet: 0100010800FE08FF01000000000000 0100010800FE08FF02000000000000

Entry 1:

OBISCode (hex) length of value (n) value

0100010800FE 08 FF01000000000000

1-0:1.8.0*254 8 511

Entry 2:

OBISCode (hex) length of value (n) value

0100010800FE 08 FF02000000000000

1-0:1.8.0*254 8 767

Reference decoder
This is a decoder written in JavaScript that can be used to parse the device's LoRaWAN messages. It
can be used as is in . The Things Network

function readName(bytes, i) {
 return bytes.slice(i, i + 6);
}

function readValue(len, bytes, i) {
 if (len <= 0) {
 return [];
 }
 return bytes.slice(i, i + len);
}

function toHexString(byteArray) {
 var s = '';
 byteArray.forEach(function (byte) {
 s += ('0' + (byte & 0xFF).toString(16)).slice(-2);
 });
 return s;
}

function signed(val, bits) {
 if ((val & 1 << (bits - 1)) > 0) { // value is negative (16bit 2's

Timestamps might not represent real time

Be aware that the timestamps are generated using the device's internal clock, which does not
necessarily represent real time! If you want exact timestamps, you should use the TimeSync
feature that synchronises the device's clock over LoRaWAN. Be sure that your network server
supports it. Even with incorrect clock, the timestamps can still be used to reassociate split
uploads.

For more information, please refer to the section on of our Timestamps in LoRaWAN
LoraWAN background article.

https://thethingsnetwork.org/
https://doc.lobaro.com/doc/background-articles/lorawan#LoRaWAN-LoRaWANTimestampsTimestamp

complement)
 var mask = Math.pow(2, bits) - 1;
 val = (~val & mask) + 1; // invert all bits & add 1 => now
positive value
 val = val * -1;
 }
 return val;
}
function uint40_BE(bytes, idx) {
 bytes = bytes.slice(idx || 0);
 return bytes[0] << 32 |
 bytes[1] << 24 | bytes[2] << 16 | bytes[3] << 8 | bytes[4] << 0;
}
function uint16_BE(bytes, idx) {
 bytes = bytes.slice(idx || 0);
 return bytes[0] << 8 | bytes[1] << 0;
}
function int40_BE(bytes, idx) {return signed(uint40_BE(bytes, idx), 40);}
function int16_BE(bytes, idx) {return signed(uint16_BE(bytes, idx), 16);}
function int8(bytes, idx) {return signed(bytes[idx || 0], 8);}

function toNumber(bytes) {
 var res = 0;

 for (var i = bytes.length-1; i >= 0 ; i--) {
 res *= 256;
 res += bytes[i];
 }

 return res;
}

function readVersion(bytes) {
 if (bytes.length<3) {
 return null;
 }
 return "v" + bytes[0] + "." + bytes[1] + "." + bytes[2];
}

function decodeStatus(bytes) {
 var decoded = {
 "version":readVersion(bytes),
 "flags": bytes[3],
 "vBat": uint16_BE(bytes, 4) / 1000,
 "temp": int16_BE(bytes, 6) / 10,
 };

 return decoded;
}

function decodeSmlValuesV1(bytes) {
 var decoded = {
 values: [],
 };

 if (bytes.length === 1) {
 // No Data! Read error?
 return decoded;
 }

 var pos = 0;
 while (pos < bytes.length) {
 var name = readName(bytes, pos);
 pos += 6;
 var len = bytes[pos];
 pos += 1;
 var value = readValue(len, bytes, pos);
 pos += len;

 var val = {
 nameHex: toHexString(name),

 len: len,
 value: toNumber(value),
 valueHex: toHexString(value)
 };

 decoded.values.push(val);
 }

 return decoded;
}

function decodeSmlValuesV2(bytes) {
 var decoded = {
 values: [],
 };

 if (bytes.length === 1) {
 // No Data! Read error?
 return decoded;
 }

 var pos = 0;
 while (pos < bytes.length) {
 var name = readName(bytes, pos);
 pos += 6;
 var len = bytes[pos];
 pos += 1;
 var value = readValue(len, bytes, pos);
 pos += len;
 if (len > 0) {
 var exponent = int8(bytes, pos);
 pos += 1;
 }
 var val;
 if (len > 0) {
 val = {
 nameHex: toHexString(name),
 len: len,
 value: toNumber(value) * Math.pow(10, exponent),
 valueHex: toHexString(value),
 }
 } else {
 val = {
 nameHex: toHexString(name),
 len: len,
 value: toNumber(value),
 valueHex: toHexString(value),
 }
 }

 decoded.values.push(val);
 }

 return decoded;
}

function decodeSmlValuesV3(bytes) {
 // Like V2, but with 5B timestamp as prefix:
 var decoded = decodeSmlValuesV2(bytes.slice(5));
 decoded.time = int40_BE(bytes, 0) * 1000;
 return decoded;
}

function Decoder(bytes, port) {
 // Decode an uplink message from a buffer
 // (array) of bytes to an object of fields.
 switch (port) {
 case 1:
 return decodeStatus(bytes);
 case 2:
 return decodeSmlValuesV1(bytes);

 case 3:
 return decodeSmlValuesV2(bytes);
 case 4:
 return decodeSmlValuesV3(bytes);
 }
}

Example parser result

Test input (Port 3): 0100010800FE08FF01000000000000FF

{
 "values": [
 {
 "len": 8,
 "nameHex": "0100010800fe",
 "value": 51.1,
 "valueHex": "ff01000000000000"
 }
]
}

Appendices

Technical characteristics

Product

Type name LOB-S-EDL21-LW

Description Electricity meter over LoRaWAN Bridge

RF transceiver

Type Semtech SX1272

Frequency 863 MHz to 870 MHz

Max. TX Power max. +14 dBm

Typical RF Range 2km

Ideal RF Range 10km (free line of sight)

LoRa communication

Protocol Class A LoRaWAN 1.0.1 EU868

Activation method Over-the-air-activation (OTAA)
Activation by personalization (ABP)

Encryption AES128

Environmental Requirements

Operating temperature -20°C – 55°C

Max installation height 2m

Standards

Disposal / WEEE / Entsorgung

Information about the disposal of the Device.

CE Declaration of Conformity

CE Declaration of Conformity (pdf).

https://doc.lobaro.com/display/PUB/WEEE+Disposal
https://doc.lobaro.com/download/attachments/4195170/ce-edl21-lorawan.pdf?version=1&modificationDate=1596640235420&api=v2

	EDL21 electricity meter bridge (LoRaWAN)

