
Manual v0.3.x (Modbus LoRaWAN)
Version v0.3.0

Target Measurement / Purpose

The Lobaro Modbus LoRaWAN Bridge is a low power device that can be used to read values out of a
variety of other devices via Modbus (ASCII/RTU) over a RS-485 interface and forward them over
LoRaWAN, so that they can be accessed from an attached system. Typical applications include reading
out electric and water meters or retrieving data from environmental sensors like temperature and
humidity.

The Modbus Bridge supports reading of all four object types that can be provided by Modbus slave
devices: Coil, Discrete Input, Input Register, and Holding Register. Multiple different slave devices on the
Bus can be accessed individually by a single Bridge device. Reading intervals and register definitions
can be configured very flexibly to suit individual requirements.

PDF Download

Data Sheet with dimensions.

Work Cycle

The Modbus LoRaWAN Bridge has a simple work cycle. It spends most of the time in a deep sleep state,
to conserve energy. For every reading it wakes up for a few seconds, requests values from the
connected slave devices, uploads the data via LoRaWAN, and then goes to sleep again. The following
flowchart illustrates the work cycle:

Init

Target Measurement / Purpose
Work Cycle
Configuration

LoRaWAN
Parameters
Modbus/UART
Operation
Register/Coil
definition

Example
register
definition
strings

Payload formats
Status messages
Data messages

Structure of
a data pack

Complex setups
Appendices

Technical
characteristics
CE Declaration of
Conformity
Disposal / WEEE /
Entsorgung
Reference decoder

This manual is for an older version of the Modbus Bridge!
–latest version version overview

Consider using the latest firmware on your hardware

This version uses a different upload format than our newer versions.
See available firmware downloads

https://doc.lobaro.com/download/attachments/4195089/Modbus-LoRaWAN-Specs.pdf?version=1&modificationDate=1596635326703&api=v2
https://doc.lobaro.com/pages/viewpage.action?pageId=4195084
https://doc.lobaro.com/pages/viewpage.action?pageId=4195082
https://doc.lobaro.com/pages/viewpage.action?pageId=4195082

When the device starts (because it has just been connected to a power source, or after a reboot) it
begins in the Init state. A quick self-check is executed; if that succeeds, the green on-board LED blinks
once, slowly. After that the configuration is evaluated and checked for invalid values. If any problems are
detected during Init, the device's LED will light up for three times, and the device will then reboot. If
everything is okay, the device will continue with the Test Reading.

Configuration

The configuration is done using and the . Lobaro Maintenance Tool Lobaro USB PC adapter

LoRaWAN Parameters

The connection to the LoRaWAN network is defined by multiple configuration parameters. This need to
be set according to your LoRaWAN network and the way your device is supposed to be attached to it, or
the device will not be able to send any data.

There are two different methods to attach a device to a LoRaWAN network: Over-the-air-activation
(OTAA) and Activation-by-personalisation (ABP). Depending on which method you are using you will
have to set different values.

Several values are a number of bytes, that need to be entered as hexstrings (without -prefix). So e.g. 0x
the DevEUI is a value of 8 bytes encoded in hex will be 16 hexdigits long. A sample value would be 0123

.456789abcdef

name used type description

OTAA both bool true use OTAA, use ABP false

DevEUI OTAA hexbyt
e[8]

the 8 byte DevEUI identifies the hardware on the join operation. The default value
is a world wide unique value predefined in the hardware. Should not be changed
unless required by the network provider.

AppEUI OTAA hexbyt
e[8]

ID defining the application used in the LoRaWAN network.

AppKey OTAA hexbyt
e[16]

Key used to encrypt communication with the LoRaWAN network.

AppSKey ABP hexbyt
e[16]

Application Session Key to be synced with the LoRaWAN network.

NetSKey ABP hexbyt
e[16]

Network Session Key to be synced with the LoRaWAN network.

DevAdr ABP hexbyt
e[4]

Device Address used to identify device in the LoRaWAN network.

SF both int Initial LoRa spreading factor used for transmissions. Valid range is 7-12. The
actual spreading factor used by change during operation if ADR is used.

ADR both bool Should adaptive data rate be used? use ADR, don't true false

Modbus/UART

There are several values that define the configuration via Modbus. These values depend on the Slave
devices that you want to read out. Please refer to your Modbus Devices's manual to find out the correct
configuration.

name description values

ModbusProtocol Which Modbus-Protocol to use RTU. ASCII

ModbusBaud UART Baud rate 9600, , , ... 19200 38400

ModbusDataLendth UART data length 7, , 8 9

ModbusStopBits UART stop bits 0.5, , , (written exactly like this) 1 1.5 2

ModbusParity UART parity NONE, , EVEN ODD

Operation

https://doc.lobaro.com/display/PUB/Lobaro+Maintenance+Tool
https://doc.lobaro.com/display/PUB/USB+Config+Adapter

1.

2.

3.

Configuration values defining the behaviour of the device.

name description example value

ModbusCron Cron expression defining when to read 0 0/15 * * * * for every 15 minutes

See also our . Introduction to Cron expressions

Register/Coil definition

Modbus defines four different object types form which values can be read: Coils, Discrete Inputs, Input
Registers, and Holding Registers. For an introduction please refer to . https://en.wikipedia.org/wiki/Modbus
There are four configuration values to define which values should be read by the Modbus Bridge, one for
each of the types.

name description Modbus Function

Coils Coils to read (single bit read-only values) 0x01

DiscreteInputs Discrete Inputs to read (single bit read/write values) 0x02

HoldingRegisters Holding Registers to read (2 byte read-only values) 0x03

InputRegisters Input Register to read (2 byte read/write values) 0x04

Each value can define multiple different registers/coils to be read on one or multiple devices connected
via Modbus. The format is identical for all four types.

Each single definition consists of three values separated by colons ().:

The address of the Modbus device that should be read from. Valid device addresses range from
1 to 247; with a single slave device on your bus this is often 1.
The address of the first register/coil to be read on the device. Register addresses are uint16
values and range from 0 to 65535.
The number of consecutive registers/coils to be read. This value is limited to 127, because
longer answers cannot be encoded. Be aware that for registers a value higher than 22 leads to
problems on high spreading factors so that the data will not be transferred completely via
LoRaWAN.

Multiple of these register definitions can be used if they are separated by commas (no spaces after the ,
comma).

You can use one or multiple of the register/coil types. If you do not want to use a type e.g. , set Coils
that definition to an empty string. The device will parse the four register strings on startup and reports
invalid definitions. The device will not work while there are invalid definitions but will reboot repeatedly
until you fix the configuration.

Example register definition strings

definition explanation

1:0:3 Read first three registers of device with address 1.

2:40001:1,2:
2000:10

Read registers 40001 and 2000 to 2009 of device 2.

4:0:2,5:0:2,5:
20:1

Read registers 0 and 1 of device 4 as well as registers 0, 1, and register 20
of device 5.

Payload formats

The Modbus Bridge sends different kinds of messages over different LoRaWAN ports:

Port Message

1 Status messages.

https://doc.lobaro.com/display/PUB/CRON+Expressions
https://en.wikipedia.org/wiki/Modbus

11 Data from reading Coils (function). 0x01

12 Data from reading Discrete Inputs (function). 0x02

13 Data from reading Holding Registers (function). 0x03

14 Data from reading Input Registers (function). 0x04

Status messages

The Modbus Bridge sends a status messages report on the health of the device itself. This messages are
sent along when the device is sending data packages with a maximum of one status message per day.

Status messages are transmitted on port 1 and have a fixed length of 14 bytes.

name pos len type description example

version 0 3 uint8
[3]

Version of firmware running on the device [1, 0, 4] v1
.0.4

flag 3 1 uint8 Status flag, for internal use 0

temperat
ure

4 2 int16 Device's internal temperature in tenth °C 246 24.6°C

voltage 6 2 int16 Voltage supplied by power source in mV 3547 3.547V

timestamp 8 5 int40 Internal date/time at creation of the status packet as
UNIX timestamp

1533055905

mode 13 1 uint8 Operation mode the device runs 1

Data messages

The principle message format is equal for all four types of registers/coils. The port used defines what kind
of register/coil was read (see table "Payload formats" above). The format slightly differs for coils versus
registers, since the amount of data per coil (1 bit) is different than the amount per register (16 bits).

Each data message is starts with a 40 bit timestamp followed by one or more data packs. Each pack
represents a single read operation caused by a single register definition in your configuration. The pack
starts with 4 bytes repeating the information of the register definition extended by a single bit reporting
errors on reading letting you know what data you are presented with and if it was read successfully). That
information is followed by the raw data bytes as they where given by the slave device (as the Bridge
cannot know how the data is presented in those bytes). The length of the data is dependent on the
register definition and on the type (registers versus coils). The length is not explicitly stated, as it can be
determined from the definition. The data bytes are also included when an error has occurred, however in
this case the content of those bytes is undefined.

Structure of a data pack

name pos len type description

addr 0 1 uint8 Modbus address of slave device.

start 1 2 uint16 Address of first coil/register read.

cnt+err 3 1 uint8 Highest bit: error indicator, 7 lower bits: number of consecutive coils
/registers read.

data 4 n uint8
[n]

Raw data bytes as sent by the slave device.

To get , the number of coils/registers read, you need to only read the lower 7 bits of the fourth byte (e. cnt
g. by using something like). The highest bit is on successful reads and if an error data[3] & 0x7f 0 1
occurred. See our reference decoder if you have trouble reading the format.

The length of the data for Coils and Discrete Inputs (Ports 11 and 12) the value of divided by 8 n cnt
rounded up (that is the minimal number of bytes needed to store bits). For Registers (Ports 13 and cnt
14) the data length is , since registers contain two bytes of data. cnt * 2

Please refer to the usable in TTN at the end of this document. reference decoder

Complex setups

The Modbus Bridge as described in this manual can be individually configured to read out any registers
and coils. For some setups, this is not enough. There can be situations in which you want to read
registers at different intervals, e.g. you might need some values with hourly updates and others only
every other day. For measuring values with high variance it can be necessary to take multiple reads over
a period of time and create an average value. Maybe you need to read a status register first and
depending on its value you want to decide which registers to read and transmit the values of. You could
also want to write values into registers with the Bridge. All this scenarios are possible to solve using the
Modbus Bridge, but their complexity leave the scope of our standard firmware. If you need any special
processing for your Modbus setup, please contact us with your requirements, and we will make you an
offer for an individual firmware that processes data the way you need. If you find that the data rate
LoRaWAN offers is a limitation for your setup, we could also provide you with a Modbus solution that
uses alternate data transmission technologies, for example NarrowBand-IoT.

Appendices

Technical characteristics

Product

Type name Modbus485-LoRaWAN

Description Modbus over LoRaWAN Bridge

RF tranceiver

Type Semtech SX1272

Frequency 863 MHz to 870 MHz

Max. TX Power max. +14 dBm

Typical RF Range 2km

Ideal RF Range 10km (free line of sight)

LoRa communication

Protocol Class A LoRaWAN 1.0.1 EU868

Activation method Over-the-air-activation (OTAA)
Activation by personalization (ABP)

Encryption AES128

Modbus communication

Bus RS-485 twisted pair wires (with optional GND)

Protocol RTU/ASCII

Environmental Requirements

Operating temperature -20°C – 55°C

Max installation height 2m

Standards

CE Declaration of Conformity

CE Declaration of Conformity (pdf).

Disposal / WEEE / Entsorgung

Information about the disposal of the Device.

https://doc.lobaro.com/download/attachments/4195089/ce-Modbus485-lorawan.pdf?version=1&modificationDate=1596635802002&api=v2
https://doc.lobaro.com/display/PUB/WEEE+Disposal

Reference decoder

This is a decoder written in JavaScript that can be used to parse the device's LoRaWAN messages. It
can be used as is in . The Things Network

function readVersion(bytes) {
 if (bytes.length<3) {
 return null;
 }
 return "v" + bytes[0] + "." + bytes[1] + "." + bytes[2];
}

function int40_BE(bytes, idx) {
 bytes = bytes.slice(idx || 0);
 return bytes[0] << 32 |
 bytes[1] << 24 | bytes[2] << 16 | bytes[3] << 8 | bytes[4] << 0;
}

function int16_BE(bytes, idx) {
 bytes = bytes.slice(idx || 0);
 return bytes[0] << 8 | bytes[1] << 0;
}

function decode_status(bytes) {
 return {
 "port":1,
 "version":readVersion(bytes),
 "flags":bytes[3],
 "temp": int16_BE(bytes, 4) / 10,
 "vBat": int16_BE(bytes, 6) / 1000,
 "timestamp": int40_BE(bytes, 8),
 "operationMode": bytes[13]
 };
}

function decode_data(bytes, port) {
 var fun = port - 10;
 var regs = [];
 if (bytes.length > 5) {
 var b = bytes.slice(5);
 while (b.length>=4) {
 var r = {
 "device":b[0],
 "start":int16_BE(b, 1),
 "count":b[3] & 0x7f,
 "error":!!(b[3]>>7),
 "data":null
 };
 var dataLen = 0;
 if (fun<=2) {
 // coils, one bit per address
 dataLen = Math.ceil(r.count/8.0);
 } else {
 // registers, 16 bits per address
 dataLen = r.count*2;
 }
 if (b.length >= dataLen+4) {
 r.data = b.slice(4, 4 + dataLen);
 }
 regs.push(r);
 b = b.slice(4+dataLen);
 }
 }
 return decoded = {
 "port": port,
 "function": fun,
 "timestamp": int40_BE(bytes, 0),
 "values": regs
 };
}

https://thethingsnetwork.org/

function Decoder(bytes, port) {
 switch (port) {
 case 1:
 return decode_status(bytes);
 case 11:
 case 12:
 case 13:
 case 14:
 return decode_data(bytes, port);
 }
 return {"error":"invalid port", "port":port};
}

Copyright Modbus Logo

http://www.modbus.org/

	Manual v0.3.x (Modbus LoRaWAN)

