
Modbus (ASCII / RTU) Bridge (LoRaWAN)
This is the latest version. For older revisions please refer to the . version overview

LoRaWAN Modbus Bridge with external 230V supply and internal antenna (LOB-GW-MODBUS-LW-PWR)

Key Features
 LoRaWAN 1.0.x and 1.1 network servers supported

 LoRaWAN Class A or Class C operation

 LoRaWAN 1.1 time synchronisation

 Upload capacity for up to 2.400 Modbus registers

 Configuration via USB or remotely via LoRaWAN downlink

 ModBus ASCII and RTU modes supported

 Readout of ModBus Coils, Discrete Inputs, Input Registers and Holding Registers

 ModBus dialog mode via USB for easy configuration testing

 Coexistence with 2nd Modbus Master possible (bus sharing, Listen before talk)

 Managed Power Supply Pin can power attached Modbus Sensor

Target Measurement / Purpose

Key Features
Target Measurement / Purpose
Supported Devices
Product variants

External powered
std. variant (LOB-GW-
MODBUS-LW-PWR)
Battery powered
variant (LOB-GW-
MODBUS-LW)

Modbus Introduction
Quick Start Guide
Work Cycle
Configuration

LoRaWAN
Modbus/UART
Modbus Commands
Listen-Before-Talk

Payload formats
Uplink Messages

Status
message
(Port 1)

Res
et
Rea
son
Code
Fin
al
wor
ds

Data
messages -
verbose
format (Port
3, PlFmt=1)
Response to
Downlink
(Port 4)
Split
messages
(Port 5)
Deprecated
Format (Port
6/7, PlFmt=2
/3)
Compact
Payload
Format (Port
20-59,
PlFmt=4&5)
Remote
Config (Port
128-131)

Downlink
Modbus
Commands
(Port 4)
Remote
Configuratio
n (Port 128)

LED Patterns
Feedback on boot

Sensor Power Supply
Managed VCC
Voltage and Current

Availability Features
Daily Status Message
Lost Network
Detection
OTAA retries
Remote
Configuration
Confirmation

This version has a different upload format than older versions!

If you are using firmware, please see the .0.3.x 0.3.x Manual
If you are using firmware, please see the .0.1.x 0.1.x Manual (PDF)
If you are updating to this firmware, be aware that you will have to update your configuration
and the parser in your backend.

https://doc.lobaro.com/pages/viewpage.action?pageId=4195082
https://doc.lobaro.com/pages/viewpage.action?pageId=4195089
https://doc.lobaro.com/download/attachments/4195084/lorawan-modbus-bridge_en_0.1.0.pdf?version=1&modificationDate=1596637704111&api=v2

The Lobaro Modbus LoRaWAN Bridge is a low power device that can be used to communicate with
Modbus Slave devices (ASCII/RTU) on a RS-485 bus over a LoRaWAN network. Modbus commands
can be transmitted via Downlink message to the Bridge and are forwarded by the Bridge to the
connected Slave Devices. Received responses are forwarded via LoRaWAN Uplink messages. The
Modbus Bridge can also be configured to execute Modbus commands regularly and report the responses
via LoRaWAN uplinks.

The Bridge supports LoRaWAN Operation Mode for power efficient operation (for long operation Class A
periods powered by battery), as well as to enable short reaction time to Downlink requests. Class C

The Modbus Bridge supports reading of all four object types that can be provided by Modbus slave
devices: Coil, Discrete Input, Input Register, and Holding Register. It also supports writing values to both
writable objects: Coils and Holding Registers. Multiple different slave devices on the Bus can be
accessed individually by a single Bridge device. Reading intervals and register definitions can be
configured very flexibly to suit individual requirements.

Typical applications for Modbus devices include reading out electric and water meters or retrieving data
from environmental sensors like temperature and humidity. Industrial machines as well as solar panel
installations often include a Modbus connection to supply supervision and automated operation.

Supported Devices
The Lobaro Modbus LoRaWAN Bridge works with all devices that act as a Modbus Client using RTU

 (Modbus TCP is supported). Some devices that have been used successfully with the or ASCII not
Bridge:

Device Type Manufacturer More
information

Octave Ultrasonic Meter Water meter Arad Group External Link

ECL Controller Heat/Hot Water Regulation Danfoss External Link

UMD 97 Smart Grid Power Meter PQ Plus External Link
(German)

DRS458DE Power Meter B+G E-Tech
GmbH

External Link

Feuchtemessumformer PCE-P18
Modbus RTU

Humidity / Temperature
sensor

PCE-Intruments External Link
(German)

Product variants
The LoRaWAN Modbus bridge can be ordered in two standard variants. For even more customizations
options see overview. Hardware Variants

External powered std. variant (LOB-GW-MODBUS-LW-PWR)

Modbus LoRaWAN Bridge (Ext. 230V Power, int. Antenna), Order number: 8000137
Separately:

LoRaWAN Modbus Bridge (ext. Power, Din-Rail, no housing), Order number: 8000043
DR-15-5 DIN-Rail power supply 5V, Order number: 3000006

Examples
Uplinks in Verbose
Payload Format
(PlFmt=1)

Example A1:
Read
Holding
Registers 0,
1, and 2 of
device with
address 1
Example A2:
Read coils
1000-1019
of device 32
Example A3:
Read
registers
from two
devices
Example A4:
Split uplink
message

Uplinks triggered by
Downlink Commands

Example B1:
Read single
Input
Register by
Downlink
Example B2:
Writing
holding
registers on
multiple
devices

Uplinks in Compact
Payload Format

Example
C1: Single
Modbus
Command,
PlFmt 4
Example
C2: Multiple
Commands,
PlFmt 5
Example
C3:
Multimple
Commands,
leading in
multiple
Upoads,
PlFmt 5

Dialog Mode
Dialog Mode Example

Complex setups
Appendices

Technical
characteristics
CE Declaration of
Conformity
Disposal / WEEE /
Entsorgung

Reference decoder

https://arad.co.il/product/octave/
https://www.danfoss.com/en/products/electronic-controls/dhs/electronic-controllers-and-application-keys/ecl-controllers/
https://www.pq-plus.de/news/pqplus/umd-97-messgeraet.html
https://www.pq-plus.de/news/pqplus/umd-97-messgeraet.html
https://bg-etech.de/Bedienungsanleitungen.html
https://www.pce-instruments.com/deutsch/regeltechnik/messumformer-messwandler/feuchtemessumformer-pce-instruments-feuchtemessumformer-pce-p18-modbus-rtu-det_26521.htm
https://www.pce-instruments.com/deutsch/regeltechnik/messumformer-messwandler/feuchtemessumformer-pce-instruments-feuchtemessumformer-pce-p18-modbus-rtu-det_26521.htm
https://doc.lobaro.com/pages/viewpage.action?pageId=4194864

RK 4/12-L DIN-Rail Housing, Order number: 3000005

Battery powered variant (LOB-GW-MODBUS-LW)

LoRaWAN Modbus Bridge (XH battery connector + Ext. Power, IP67 housing), Order number:
8000041
ER34615 (3.6V Battery, XH Connector, 0.2A), Order number: 3000169
Request quote via E-Mail (sales@lobaro.com)

(with M8 cable gland - missing in picture)

Modbus-LoRaWAN-Specs.pdf

https://doc.lobaro.com/download/attachments/4195084/Modbus-LoRaWAN-Specs.pdf?version=1&modificationDate=1596623523456&api=v2

Modbus Introduction
For an overview about the Modbus protocol please refer to our documentation page about .Modbus

For a deeper introduction into Modbus please visit . https://en.wikipedia.org/wiki/Modbus

Quick Start Guide

Connect the Modbus Bridge to your Modbus Slave Device using the RS485 connection using a
twisted pair cable: to , to , and to (is not strictly necessary but enhances the A A B B GND GND GND
connection. Not all slave devices supply a connector). GND
Connect the Modbus Bridge to a computer using the and the Lobaro Configuration Adapter Loba

.ro Maintenance Tool
Synchronize the LoRaWAN configuration parameters between the Bridge and your Network
Server.
Make sure the Bridge is in reach of a Gateway attached to your Network Server.
Set the Modbus Parameters according to your Slave Device (ASCII/RTU, Baud, Data Length,
Stop Bits, Parity).
Set to the Modbus Command to read the register you need (see below). MbCmd
Save the configuration and switch to the Log tab. You should see the device requesting the data
and uploading it via LoRaWAN.

MbCmd must contain the Modbus Command the Bridge will execute. The command is entered in Hex and
without any check sums and is 6 bytes long (12 hexdigits). The default value is , it 010300000003
consists of 4 parts: , , , 01 03 0000 0003

01

Address of the Slave Device. 1 byte: often 01 new devices

03

What kind of Modbus Register to read. 1 byte. 03 stand for Holding Register.

0000

Number/address of the first register to read. 2 bytes. Many devices have some value to read out at 0000.

0003

Number of consecutive registers to read from the first register. 2 bytes. This would read the registers #0,
#1, and #2 in one command.

The format used for is conforming to the Modbus Standard. See MbCmd Configurations/Modbus
for a description and for some more advance examples. The Modbus Bridge has aCommands Examples
that lets you try out Modbus Commands interactively which helps getting used to the syntax Dialog Mode

and helps you in trying out your slave devices.

Online Tools

https://npulse.net/en/online-modbus

Further customization Options

The product variants shown above are the variants. standard

Other power supply options & housing are available on request

External antenna
AA batteries
NB-IoT instead of LoRaWAN

Contact us via if you need our offer for a special variant. support@lobaro.de

Please refer to the rest of this documentation for a save and proper use of the Modbus
Bridge.

This Quick Start Guide can only show you basic operations. It illustrates reading a single value
from one Slave Device.

https://doc.lobaro.com/display/PUB/Modbus
https://en.wikipedia.org/wiki/Modbus
https://doc.lobaro.com/display/PUB/USB+Config+Adapter
https://doc.lobaro.com/display/PUB/Lobaro+Maintenance+Tool
https://doc.lobaro.com/display/PUB/Lobaro+Maintenance+Tool
https://npulse.net/en/online-modbus
https://doc.lobaro.com/pages/viewpage.action?pageId=4194864
mailto:support@lobaro.de

Work Cycle
The Modbus LoRaWAN Bridge has a simple work cycle. It spends most of the time in a deep sleep state,
to conserve energy. For every reading it wakes up for a few seconds, requests values from the
connected slave devices, uploads the data via LoRaWAN, and then goes to sleep again. The following
flowchart illustrates the work cycle:

Init

When the device starts (because it has just been connected to a power source, or after a reboot) it
begins in the Init state. A quick self-check is executed; if that succeeds, the green on-board LED blinks
once, slowly. After that the configuration is evaluated and checked for invalid values. If any problems are
detected during Init, the device's LED will light up for three times, and the device will then reboot. If
everything is okay, the device will continue with the Test Reading.

Test Reading

After verifying configuration, the Bridge executes all Modbus Commands stored once without uploading
the results but logging them only to the console. This makes it easy to verify all Modbus Slaves are
reachable and their registers can be read. Connect your computer to the Bridge using the Lobaro Config
Adapter and check the output using the Lobaro Maintenance Tool. The device will continue
with LoRaWAN Join to connect to the Network (whether the test reading was successful or not does not
change this).

LoRaWAN Join

The Bridge tries to connect to the LoRaWAN Network. The Details depend on the device's configuration
(OTAA vs. ABP, optional Time synchronisation). Unless ABP is used, the Bridge will remain in this state
until joining succeeds. It will repeat to send Join requests with decreasing frequency. After successfully
attaching it enters Data Collection for the first time and starts the normal operation cycle.

Data Collection

The Bridge sends all Modbus Commands from the Configuration on the Bus and collects the answers (or
lack thereof).

Data Transfer

The collected Modbus Responses are uploaded via LoRaWAN. This can take multiple upload messages
depending on the amount of data collected. Once a day a status message is also uploaded, giving some
information about the state of the Bridge itself. If many messages are uploaded this can take a long time.
At least one message is uploaded during this state. When all data is uploaded, the device goes to Sleep.

Sleep

Between activations the device enters a very power efficient sleep mode. It stays dormant until the time
specified by the Cron expression, when it changes back to Data Collection.

Configuration
The (initial) configuration is normally done using our free and the Lobaro Maintenance Tool USB PC

.configuration adapter

Beside this the configuration can also be changed or read remotely in the field using LoRaWAN downlink
, see description.messages Downlinks

LoRaWAN

The connection to the LoRaWAN network is defined by multiple configuration parameters. This need to
be set according to your LoRaWAN network and the way your device is supposed to be attached to it, or
the device will not be able to send any data.

For a detailed introduction into how this values need to be configured, please refer to the chapter LoRaW
in our LoRaWAN background article.AN configuration

Name Description Type Values

OTAA Activation: OTAA or ABP bool true= use OTAA, = use ABP false

https://doc.lobaro.com/display/PUB/Lobaro+Maintenance+Tool
https://doc.lobaro.com/display/PUB/USB+Config+Adapter
https://doc.lobaro.com/display/PUB/USB+Config+Adapter
https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-LoRaWANConfiguration
https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-LoRaWANConfiguration

DevEUI DevEUI used to identify the Device byte[8] e.g. 0123456789abcdef

JoinEUI Used for OTAA (called AppEUI in v1.
0)

byte[8] e.g. 0123456789abcdef

AppKey Key used for OTAA (v1.0 and v1.1) byte
[16]

NwkKey Key used for OTAA (v1.1 only) byte
[16]

SF Initial / maximum Spreading Factor int 7 - 12

ADR Use Adaptive Data Rate bool true= use ADR, = don't false

OpMode Operation Mode string A= Class A, = Class C C

TimeSync Days after which to sync time int days, =don't sync time 0

RndDelay Random delay before sending int max seconds

RemoteConf Support Remote Configuration bool true=allow, =deactivate false

LostReboot Days without downlink before reboot int days, =don't reboot. See 0 Availability
.Features

Modbus/UART

There are several values that define the configuration via Modbus. These values depend on the Slave
devices that you want to read out. Please refer to your Modbus Devices's manual to find out the correct
configuration.

name description values

MbProt Modbus-Protocol to use RTU. ASCII

MbBaud UART Baud rate 9600, , , ... 19200 38400

MbDataL
en

UART data length 7, , 8 9

MbStopB
its

UART stop bits 0.5, , , (written exactly like this) 1 1.5 2

MbPar UART parity NONE, , EVEN ODD

MbCron Cron expression defining when †
to read.

0 0/15 * * * * for every 15 minutes

MbCmd List of Modbus Commands (see
below).

010300010003

PlFmt Uplink Format 1, , or , see (Formats 2 and 3 4 5 Payload Formats
where deprecated in fw 1.3.0)

PlMax ‡ Message size for compact format 10-241, dependent on Spreading Factor, see
compact payload format.

PlId ‡ Compact format ID 0-127, see compact payload format.

PowerDe
lay ‡

Warm up time of managed
Power Supply, seconds

0-3600 seconds, for always on-1

EnDL Enable Downlinks true= enable sending Modbus Commands via
Downlink

DialogM
ode

Enable Dialog Mode true= set the Bridge to Dialog Mode

LbtDura
tion

Listen-before-talk Duration 0= disables, - = seconds of lbt duration 1 3600

LbtSile
nce

Listen-before-talk Silence 0= disabled, - seconds of silence needed 1 3600

† See also our . Introduction to Cron expressions
 Since version 1.3.0.‡

https://doc.lobaro.com/doc/lorawan-devices/modbus-ascii-rtu-bridge-lorawan#Modbus(ASCII/RTU)Bridge(LoRaWAN)-AvailabilityFeatures
https://doc.lobaro.com/doc/lorawan-devices/modbus-ascii-rtu-bridge-lorawan#Modbus(ASCII/RTU)Bridge(LoRaWAN)-AvailabilityFeatures
https://doc.lobaro.com/display/PUB/CRON+Expressions

Modbus Commands

Whenever the cron expression given in the configuration value activates, the Modbus Bridge MbCron
wakes up from hibernation (or listening mode, for Class C), a set of configured Modbus Commands (set
in the configuration parameter) is executed over the RS-485 bus. Any responses received from MbCmd
the addressed Slave Device will be uploaded via LoRaWAN.

The Modbus Commands to be executed must be entered in the config as hexencoded bytes, exactly the
way they are to be sent over the bus. Checksums must not be included in the configuration. Multiple
commands can be added to the configuration, separated by commas (no spaces). For example if you
want the Bridge to read the Holding Registers 100, 101, and 102 on two separated Slave Devices with
the addresses 9 and 10, you would need to set to . MbCmd 090300640003,0a0300640003

You can configure any byte sequence you want to be sent; not all will be valid Modbus Commands. This
feature has been developed to execute register/coil reads and upload the values retrieved. It is possible
to use it for writing values as well, but the usefulness of that is limited. If you configure register writes, be
aware that the commands are also executed when the device boots!

Keep in mind that the responses to your commands will be sent using LoRaWAN, which has only a very
limited packet size! Modbus responses can be over 200 bytes long. For reading commands, the Modbus
Response contains 6 bytes to repeat the command. The data format used by the Modbus Bridge adds
another 6 bytes. On higher spreading factors with 51 byte message limit this only leaves 39 bytes for the
actual read data (in EU LoRaWAN configuration, other areas might have a slightly different number).
Responses that will not fit into a single LoRaWAN Uplink will be split and uploaded using multiple
LoRaWAN messages. Your backend will need to those parts back together. Any message that is the
continuation of an earlier uplink will be sent using port 5 (see). Split Messages

For a short introduction into Modbus Commands and some examples of configurations and their created
responses, please take a look at the . examples

Listen-Before-Talk

If you want to use the Lobaro Modbus Bridge to read out values on an installation that already has an
active Modbus Master, you will run into conflicts, because the Bridge acts as a Master. Normally only a
single Master device is allowed on a Modbus installation. The Bridge supports a featur Listen-Before-Talk
e, that makes it possible to be used alongside a second Master Device (under certain conditions).

If your other Master Device has periods of non-communication that are long enough, you can configure
the Bridge to wait for those pauses before starting it's own requests: When is Listen-Before-Talk
activated, the Bridge does not immediately start sending on the Bus when it normally would. Instead it
starts listening on the Bus until the other Master starts talking and then waits for silence to detect when
the other Master just finished communicating. Only then does it send it's requests.

The Bridge waits for a maximum of seconds for the other Master to start communicating. LbtDuration
Then it waits for a period of silence that lasts at least seconds to decide that the other LbtSilence
master has completed its work and is now in pause.

So if, for example, your other Master has a work interval of 2 minutes and is active for about 30 seconds
without longer pauses, you could set to (10 seconds added as a buffer), and LbtDuration 130 LbtSil

to (make sure the value is longer than the timeout your other master has).ence 15

You will have to know exactly how your other Master acts to setup this feature.

If you set either of or to , you will deactivate completely LbtDuration LbtSilence 0 Listen-Before-Talk
(it is deactivated by default).

Payload formats
The Modbus Bridge sends two different kinds of messages over three different LoRaWAN ports:

Direction Port PlFmt Value Message

Uplink 1 any Status messages.

Uplink 3 1 Modbus Responses triggered by configuration.

Uplink 4 any Modbus Responses triggered by Downlinks.

Uplink 5 any Continuation of Responses that do not fit in a single Uplink.

Uplink 6 2 Compact payload format with timestamp

Uplink 7 3 Compact payload format without timestamp

Uplink 128 any Remote configuration response

Uplink 129-131 any Remote configuration long response
129 = start, 130 = middle, 131 = last

Downlink 4 any Modbus Commands to be forwarded by the Bridge.

Downlink 128 any Remote configuration

In addition to the description we also supply a usable in TTN at the end of this reference decoder
document.

Uplink Messages

Status message (Port 1)

The Modbus Bridge sends a status messages report on the health of the device itself. This messages are
sent along when the device is sending data packages with a maximum of one status message per day.

Status messages are transmitted on port 1 and have a fixed length of .16 bytes

name pos len type description example

version 0 3 uint8
[3]

Version of firmware running on the device [0, 4, 1] v0
.4.1

flag 3 1 uint8 Status flag, for internal use 0

temperature 4 2 int16 Device's internal temperature in tenth °C 246 24.6°C

voltage 6 2 uint16 Voltage supplied by power source in mV 3547 3.547V

timestamp 8 5 int40 Internal date/time at creation of the status packet as
UNIX timestamp

1533055905

plFmt 13 1 uint8 The configured payload format 1, 2, 3, 4, 5

resetReas
on‡

14 1 uint8 Cause of latest reset, coded 0

finalWords‡ 15 1 uint8 Last info before latest reset, coded 0

‡ Since version 1.3.0.

Reset Reason Code

The reset reason reports what triggered the latest reboot (which might have happend month ago). The
information is coded in a single unsigned byte:

Hex Dec Name Meaning

0x01 1 LOW_POWER_RESET Supply voltage dropped critically. Low battery?

0x02 2 WINDOW_WATCHDOG_RESET

0x03 3 INDEPENDENT_WATCHDOG_RES
ET

0x04 4 SOFTWARE_RESET Reboot triggered by Firmware, check final words

0x05 5 POWER_ON_RESET Power turned on, e.g. battery inserted, connected to grid

0x06 6 EXTERNAL_RESET_PIN_RESET Reset button pressed or reset via config adapter

0x07 7 OBL_RESET

0xff 255 UNKNOWN

Final words

When the device reboots actively, it saves the information what triggered the reboot. Some of these
codes (below) are only useful for debugging the firmware by Lobaro. See for 0x10 Availability Features
more information. The Final Words are coded in a single unsigned byte:

Hex Dec Name Meaning

0x00 0 NONE No information available / externally triggered reset (check reset reason).

0x01 1 RESET Intentional reset by firmware without additional information.

0x02 2 ASSERT Assertion error in firmware.

https://doc.lobaro.com/doc/lorawan-devices/modbus-ascii-rtu-bridge-lorawan#Modbus(ASCII/RTU)Bridge(LoRaWAN)-AvailabilityFeatures

0x03 3 STACK_OVER
FLOW

Stack overflow error in firmware.

0x04 4 HARD_FAULT Assertion error in firmware.

0x05 5 OUT_OF_MEM
ORY

Firmware failed to allocate a critical portion of memory.

0x10 16 INVALID_CO
NFIG

Invalid configuration was detected (might have triggered config revert after
remote config).

0x11 17 REMOTE_RES
ET

Remote command (via downlink config) caused reboot.

0x12 18 NETWORK_LO
ST

Device detected loss of LoRaWAN network and decided to rejoin (see LostRe
 config parameter).boot

0x13 19 NETWORK_FA
IL

Device failed to join LoRaWAN network after parameter where changed via
remote config.

Data messages - verbose format (Port 3, PlFmt=1)

Data messages contain responses to Modbus Commands received by the Bridge. The Bridge supports
multiple Payload formats for different use cases. The format is selected by the configuration parameter Pl

:Fmt

1: Verbose payload format (port 3)

The verbose payload format (=) is the standard setting of the Bridge. It is designed to be very PlFmt 1
versatile (it uploads the complete Response sent by the Slave Devices, so reading registers as well as
writing registers are both supported). It contains all information you need to know the register and the
slave device your data is coming from. You do not need to know the exact configuration of your devices
in your backend to be able to parse the data. This is convenient when you have man Modbus Bridges
with different configuration in the field. This payload format is also good in communicating error
conditions in case the executed Modbus Commands fail. The trade off is overhead in the transmission. If
you need to get a lot of data uploaded often, this could be a problem for you with the limited LoRaWAN
bandwidth. If this is a problem for your use case, you should take a look at the compact data formats.

Data messages using the verbose payload format are uploaded on port 3. Every message starts with a 5
byte timestamp (UNIX timestamp as big endian , see) for int40 timestamps in our LoRaWAN devices
more information). The timestamp is followed by one or more responses of varying length.

Each of the responses starts with a single byte () indicating the length of its payload () uint8 len
followed by that many bytes of payload. The payload consists of the raw Modbus response as sent by
the Slave Device followed by 3 additional bytes: the first register/coil as (big endian) and the uint16
number of registers/coils as taken from the executed command. The following tables visualise the uint8
message structure. See the Section for some sample data messages explained down to the Examples
individual bytes. We also provide a in JavaScript that can read the format. Reference Decoder

The timestamp in the message is the wakeup time when the device was activated by the cron expression
in (using the devices internal clock), so all Uplinks from a single activation will have the same MbCron
Timestamp. The Modbus Response in the message in addition with the start register/coil and the register
/coil count makes it possible to know which registers/coils where exactly read/written, what kind they
were, and the address of the device. For Modbus Commands that do not have a register/coil count (like
function 5, forcing a single coil), or for those that do not contain a start register/coil (e.g. funtion 7,
reading exception status), the contents of the additional fields and/or are start register count
undefined. The payload format used only a single byte for the count value, so if you are reading/writing
more than 255 coils, the higher byte will be cut off.

The Bridge puts as many responses as in one message as possible (without changing the order of
responses and respecting the maximal message size of the current). If the responses Spreading Factor
do not fit into a single message it will upload as many messages as needed. When a single response is
too long to fit in a message, the response will be split up over multiple messages and will need to be
reassembled in the backend. See for instructions on how to do that and how to prevent Split Messages
splitting.

Structure of a message on port 3:

Bytes | 0 . 1 . 2 . 3 . 4 | 5 ... | ... | ... | ... |
 +-------------------+------------+------------+-----+------------+
Part | timestamp | response 1 | response 2 | ... | response n |

Structure of a response part on port 3:

Bytes | 0 | 1 .. len-3 | len-2 . len-1 | len |
 +-----+-----------------+----------------+-------+
Field | len | Modbus response | start register | count |

Response to Downlink (Port 4)

https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-Timestamp
https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-SpreadingFactor

A Downlink Modbus Command can be executed on Downlink Port 4. The answer has the verbose
payload format like described above on port 3.

The Timestamp in Port 4 Uplinks is the time when the Downlink containing the Command was received
(according to the devices internal clock).

For details about the downlink see below.

Split messages (Port 5)

If a single Modbus Response does not fit into a LoRaWAN uplink, due to the length restriction for the
current Spreading Factor, the message is split up into multiple Uplinks. The first part will be sent on Port
3 (for cron triggered reads) or on Port 4 (for reads triggered by downlink). The remaining Bytes will be
sent in the following uplinks on Port 5 in as many Uplinks as needed. You can know that an Uplink is
split, when the length information (Byte 0 in the response part) is longer than the data following it. The
payload from Port 5 must be appended to the last uplink received on either Port 3 or 4 in your application
server, before you can parse the message. Check the frame counter to make sure you receive all parts.
For very long responses and high Spreading Factors, splits over up to 6 messages are possible.

Split messages will only ever contain a single Modbus Response. If multiple Responses are transmitted,
they will be put in separat Port 3 or Port 4 Uplinks.

You can prevent splitting of messages completly, if you make sure your Responses will never be longer
than 42 Bytes (or longer if you reduce the Spreading Factor). You can also change to using the Compact
Payload Format to avoid Splitting.

The section contains an illustration of a split up Response. Examples

Deprecated Format (Port 6/7, PlFmt=2/3)

Prior to Firmware Version 1.3.0 there was a different Compact Payload Format on Ports 6-7. That format
was never completly documented and had issues with long payloads. It has therefore been deprecated in
v1.3.0 and been replaced by the new Compact Payload Format (Ports 20-59). If you have setups that
use this format, please migrate them to the new format, of continue to use the Firmware v1.2.2.

Compact Payload Format (Port 20-59, PlFmt=4&5)

The Modbus Bridge provides an alternative Payload Format for uplinks that uses the limited bandwidth
more efficiently by only sending data. This requires a dedicated parser on the network server of
application server that has knowledge of the device's configuration. The configuration can be requested
from devices in the field with our Remote Configuration. Be aware that Error Conditions cannot be
communicated as well in this format.

When using the compact format, all Modbus Command from is executed in order. Only the MbCmd
payload is taken from the responses, as it is sent by the Modbus Slaves. As many responses as fit in a
single upload are connectated and send on Port 20. The next responses connectated are send on Port
21 and so forth, up to port 59 (so there can be up to 40 different uplinks). The Uplinks are prefixed with a
short Message Header. When a Modbus Command fails to execute, an Error Indicator is set and the
Bytes for that command are set to .0xff

On booting, the device prints the complete Payload Format in the Log, so it is relatively easy to
write a parser with that information (only for Payload Formats 4 and 5).

There are 4 ConfigParameters that influence the format: , , , and of course .PlFmt PlMax PlId MbCmd

PlFmt=5 sends a Message Header of 1 byte, containing an error indicator (highest bit) and the value
given in (lowest 7 bits).PlId

 sends a Message Header of 6 byte, consiting of the same byte as in followed by a 5 PlFmt=4 PlFmt=5
Byte timestamp (Unix Timestamp).int40 BE

PlId is a numeric value that is simply uploaded with each Uplink. This can be used for advanced 0-127
setups where you have multiple different configurations for a big number of devices, so that the parser
knows, what configuration to use.

If you have problems writing a dedicated parser, please contact Lobaro, we can provide you
with an offer for writing it for you.

PlMax limits the number of Bytes that will be used per Uplink (including the Message Header of 1 or 6
bytes). This an advanced parameter that can be used to optimise distribution of data over the Uplink
messages. This value is limited by the LoRaWAN restrictions and cannot be set higher than possible for
the configurated Spreading Factor (ConfigParameter). For the default of it is limited to SF SF 12 51
Bytes. See in our LoRaWAN background article for all numbers. Be aware, that Spreading Factor
selecting a lower Spreading Factor will decrease the range your device can communicate via LoRaWAN
drastically. No single ModbusCommand must create a Payload that does not fit into this limit (after also
including the Message Header).

The Timestamp contains the time the device wakes up by the cron (according to the internal clock). So
all Uplinks from the same activation will have the same Timestamp and are easy to associate.

Remote Config (Port 128-131)

When Remote Configuration is enabled, you can send Downlinks on Port 128 to read or set Config
Parameters and execute commands like Reboot. Responses to those Downlinks are set on port 128 (or
129-131 if they are too long for a single Uplink).

Downlink

Please be aware that Downlinks in LoRaWAN can only be received when the device sends an Uplink, or
when the device operates in Class C mode. See in our LoRaWAN page for more Uplinks and Downlinks
information. Also, reception quality of Downlinks is typically worse than reception quality of Uplinks.

Modbus Commands (Port 4)

Downlinks on port 4 contain one or more Modbus Commands that the Bridge should forward to the RS-
485 bus. Every Command must be prefixed by a single byte defining the Command's length as . uint8
The Modbus Commands must be sent as and without any check digits. raw bytes

The Responses to the Commands are sent as . The payload format on port Uplink messages on port 4
4 is the same as on port 3 (see), only that the timestamp indicates the time the downlink Data messages
was received by the Bridge.

Any byte sequence can transmitted this way and will be forwarded to the bus. If the Bridge does not
receive a Response by the addressed Slave Device, it creates an error Response with the exception code

"Gateway Target Device Failed to Respond". This only makes sense if the Downlink did contain a 11
Modbus Command, but it will be performed for any sequence of bytes you send. Commands must have a
length of at least 3 bytes.

Please be advised that not all Modbus Slave devices send Responses in all cases. If you receive the
exception code it is possible that the Slave device was reached but was not addressed correctly. It 11
might even be possible, that a Command was executed successfully, but that the device does not send
confirmations. When in doubt, refer to the documentation of your connected devices or try
communicating with it directly from your computer or using the , to reduce possible error Dialog Mode
sources.

Refer to to see some Downlinks and their answers. Examples

Remote Configuration (Port 128)

The Modbus Bridge supports configuration via LoRaWAN Downlinks. It receives commands on port 128.
See in our LoRaWAN page for instructions on how to use it. Remote Configuration

Supported downlink messages:

Char Command Parameter Hex Version required

? Request firmware and version None 3F

g Get config parameter value <name> 67

r Reset config parameter value <name> 72

s Set config parameter value <name>=<value> 73

S Set config parameter value + Save and reboot <name>=<value> 53 1.3.0

a Append to config parameter value <name>=<value> 61

b Reboot device without saving None 62

w Save config and reboot device None 77

<name> is the ASCII encoded name of the parameter
<value> is the ASCII encoded value

https://doc.lobaro.com/doc/background-articles/lorawan#LoRaWAN-SpreadingSpreadingFactor
https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-UplinksandDownlinks
https://doc.lobaro.com/display/PUB/LoRaWAN#LoRaWAN-RemoteConfiguration

LED Patterns
The Modbus Bridge contains a green LED that is used to give feedback of it's operations. 5 short flashes
in sequence indicate some kind of failure

Pattern Pattern description Meaning

— 0.5s on Device just booted

-- · Two long, one short Successful Modbus readout (all commands)

-- ····· Two long, five short Modbus readout failed (at least one command)

--- · Three long, one short OTTA Join successfull

--- ····· Three long, five short OTTA Join failed (will retry with exponential timeout up to 8h)

Feedback on boot

On boot (e.g. after pressing reset button), the Bridge flashes for half a second: —

After that it does a test Modbus readout of all configured commands. If all succeed, it will flash , if -- ·
one or more commands fail (because of error in the connection or because of misconfiguration, e.g.
invalid registers), it will flash instead. -- ·····

If the device is configured for OTAA Join, it will then try to join the LoRaWAN Network. On success it will
flash If the OTAA Join fails, it will flash and then retry to join until it succeeds (with --- · --- ·····
exponentially growing timeouts, starting at 30s and maxing out at 8h).

This Feedback allows to quickly check an installed device to work correctly without the need to attach a
PC, by simply pressing the reset-button.

Sensor Power Supply
The Modbus Bridge has the ability to supply a connected sensor with power (within limits). The connector
pins include a and a pin that can be used to power an external device, e.g. an attached sensor GND VCC
that will be read out over Modbus. With the battery powered version of the Modbus Bridge this can be
used to build autonomous radio connected sensors with low power Modbus capable sensors. is 3.3VCC
VDC (230V variant) or the 3.6V battery voltage (battery powered variant).

Managed VCC

The pin on the Modbus connector is managed by the Bridge (meaning, that it can be turned on and VCC
off as needed). The power is activated while the Bridge sends commands via Modbus and is deactivated
when communication has completed.

Sensors might need time to be ready for read out on power on, so it is possible to add a delay between
power on and communication. The ConfigParameter can be set to a time in seconds that PowerDelay
should be waited (0s up to 1h).

The special value can be used for to have the power turned on permanently, if you -1 PowerDelay
want to attach a device that needs continuous power.

Voltage and Current

When is active, it is connected to the voltage regulator (3.3V, 0.5A max for the externally powered VCC
version), or directly to the battery (3.6V, 0.2A max for the battery version). The Modbus Bridge itself
draws up to ~0.1A on uploads, but only ~0.01A during Modbus readouts (when the managed is VCC
normally active).

Availability Features

Older hardware revisions do not include the VCC pin. Those revisions cannot be used to
power an external sensor.

The Device has availability as a high priority. It implements features that try to avoid it ever beeing out in
the field impossible to be reached. This can lead to reboots and config resets that are difficult to
understand without additional background.

Daily Status Message

Independent of the measure cron given in the configuration, the device wakes up at least once a day to
send a status message. This gives the user a chance to change the devices configuration (via
downlinks), even it is set to only send one uplink per year (either intentionally or by accident). It will also
let you know if there is a problem with the device (low battery, vandalisation) before your important yearly
readout failes to be executed.

Lost Network Detection

In LoRaWAN there exists a session between the Device and the Network Server. This is typically created
on OTAA Join. This session can be lost on side of the Network Server (Database problems, etc). If this
happens, the only way to establish connection with the Device again is by rebooting it. With the session
lost this normally means you need physical access to the device to trigger a reset.

Out LoRaWAN Devices have a feature that detects a lost connection to the LoRaWAN Network within
days and triggers a reboot to trigger a new OTAA Join. It is controlled by the ConfigParameter LostRebo

. You can indicate a number of days there. If the Device does not receive any Downlinks for that ot
number of days, it decides the Network has been lost and it reboots. Any Downlink received counts for
this feature: ADR, time synchronisation, ACKs, remote config. After half of the configured time has been
passed without a Downlink, the Device starts to request ACKs from the Network to enforce a Downlink
message.

When this feature triggers a reboot, it will be reported in the Final Words of the Status Message as NETWO
.RK_LOST = 0x12

The time span for this feature is relatively long on purpose (10 days default), because it is meant to catch
edge cases only and we do not want false positives to trigger unnecessary reboots.

Setting to deactivates this feature completely.LostReboot 0

This feature can also be used if you decide to switch your LoRaWAN Network, e.g. if you start your role
out with public TTN and later decide to switch to your own network solution. Simply create the devices in
your new Network Server and delete them in the old. After the number of day passes, the devices will
reboot and join the new network (alternatively you can use remote config for that to avoid the donwtime).

OTAA retries

When the Device fails its OTAA Join with the Network, it will retry indefinitely until it succeeds. The first
retry will happen after 30s. With each failure it will double the timeout between attempts until a maximal
time of 8h has been reached. This is a tradeof between waiting time and battery life, in case there is a
long lasting Network problem. The timeouts will have an additional random delay added, so that multiple
Devices in close proximity will not all send at the same time.

Remote Configuration Confirmation

It is easy to set the Device to an invalid configuration. For remote configuration a changed configuration
will therefore be marked as temporary until it has been tried and confirmed to work (unless you use the
override feature, which you should not do outside of very special cases). When the new configuration
fails, the previous one is restored and the device rebooted. This will be reported in the Final Words of the
Status Message as .INVALID_CONFIG = 0x10

If you change the LoRaWAN parameters for OTAA via remote config, the Device will try up to 5 times to
do the OTAA Join. If that fails, the config will be reverted. This will be reported in the Final Words of the
Status Message as .NETWORK_FAIL = 0x13

Examples
This chapter illustrates with some examples, how working with the Modbus Bridge looks like. The bytes
that are sent via LoRaWAN are presented here as hex strings, while on the air they are sent as raw
bytes. Modbus Commands and Responses are broken down to their parts in the explanations, but
explaining the format used by Modbus in detail is beyond the scope of this manual. You can find a short
explanation on Modbus on Wikipedia: . https://en.wikipedia.org/wiki/Modbus

Uplinks in Verbose Payload Format (PlFmt=1)

https://en.wikipedia.org/wiki/Modbus

The following shows some examples of configuration for the automated reading and what the generated
Uplinks for that could look like.

Example A1: Read Holding Registers 0, 1, and 2 of device with
address 1

Verbose Payload Format (Port 3, PlFmt=1)

MbCmd = '010300000003'

Example resulting Uplink after successful readout
Up, Port 3: '005d1698fd0c0103061234567890ab000003'
 '005d1698fd' -> timestamp = 1561762045 -> 2019-06-28T22:47:25 UTC
 '0c' -> first Response is 12 bytes long
 '0103061234567890ab000003' 12 bytes modbus response:
 '01' -> slave device with address 1
 '03' -> function 3 = read Holding Register, success
 '06' -> 6 bytes of data in Response following
 '1234567890ab' -> 6 bytes of data
 '0000' -> start reading at register 0
 '03' -> read 3 consecutive registers

Example resulting Uplink after failing readout
Up, Port 3: '005d1698fd0601830b000003'
 '005d1698fd' -> timestamp = 1561762045 -> 2019-06-28T22:47:25 UTC
 '06' -> first Response is 6 bytes long
 '01830b000003' 3 bytes modbus response:
 '01' -> slave device with address 1
 '83' -> function 3 with error indicator 80 = read Holding Register,
failed
 '0b' -> error code 11: "Gateway Target Device Failed to Respond"
 '0000' -> start reading at register 0
 '03' -> read 3 consecutive registers

Example A2: Read coils 1000-1019 of device 32

Verbose Payload Format (Port 3, PlFmt=1)

MbCmd = '200103e80014'

Example resulting Uplink
Up, Port 3: '005d1698fd 09 200103f1041a03e814'
 '005d1698fd' -> timestamp = 1561762045 -> 2019-06-28T22:47:25 UTC
 '09' -> first Response is 9 bytes long
 '200103f1041a03e814' 9 bytes of response:
 '20' -> slave device with address 32
 '01' -> read coils, success
 '03' -> 3 bytes of data
 'f1041a' -> 20 bits of data packed into 3 bytes
 '03e8' -> start reading at coil 1000
 '14' -> read 20 consecutive coils

Example A3: Read registers from two devices

Verbose Payload Format (Port 3, PlFmt=1)

MbCmd = '0a0300010005,3001ea600020'

Example resulting Uplink
Up, Port 3:
'005d1698fd100a030a111122223333444455550001050a30010412345678ea6020'
 '005d1698fd' -> timestamp = 1561762045 -> 2019-06-28T22:47:25 UTC
 '10' -> first Response is 16 bytes long
 '0a030a11112222333344445555000105' 16 bytes of Response
 '0a' -> slave device with address 10
 '03' -> read Holding Registers, success
 '0a' -> 10 bytes of data following
 '11112222333344445555' 10 bytes of data
 '0001' -> start reading at register 1
 '05' -> read 5 registers
 '0a' -> second Response is 10 bytes long
 '30010412345678ea6020' 10 bytes of Response
 '30' -> slave device with address 48
 '01' -> read Coils, success
 '04' -> 4 bytes of data following
 '12345678' -> 32 bits of data packed in 4 bytes
 'ea60' -> start at coil 60000
 '20' -> read 32 coils

Example A4: Split uplink message

Verbose Payload Format (Port 3, PlFmt=1)

MbCmd = '010300010020'
Command reads 32 consecutive registers resulting in 64 bytes payload

Example resulting Uplinks for a Spreading Factor of 12 with 51 bytes of
payload per message
Up 1, Port 3:
'005d1698fd46010340000100020003000400050006000700080009000a000b000c000d000e
000f001000110012001300140015'
 '005d1698fd' -> timestamp = 1561762045 -> 2019-06-28T22:47:25 UTC
 '46' -> first Response is 70 bytes long since the remainder of the
message does not contain 70 bytes,
 you know there must be an additional part coming
Up 2, Port 5: '0016001700180019001a001b001c001d001e001f00200120'
 This contains the rest of the message. Appended to the previous message,
it adds up to the correct number of bytes.

Uplinks triggered by Downlink Commands

Example B1: Read single Input Register by Downlink

Verbose Payload Format (Port 4, Downlink Response)

Down, Port 4: '06180401000001'
 '06' -> first Command is 6 bytes long
 '180401000001' 6 bytes of Modbus Command
 '18' -> slave device with address 24
 '04' -> function 4, read Input Register
 '0100' -> start at register 256 '0001' -> read 1 register

Example resulting Uplink
Up, Port4: '004b3dd67508180402abcd010001'
 '004b3dd675' -> timestamp = 1262343797 -> 2010-01-01T11:03:17 UTC
 '08' -> first Response is 8 bytes long
 '180404abcd010001' 8 bytes of Response
 '18' -> slave device with address 24
 '04' -> read Input Register, success
 '02' -> 2 bytes of data following
 'abcd' -> 2 bytes of data
 '0100' -> start at register 256
 '01' -> read 1 register

Example B2: Writing holding registers on multiple devices

Verbose Payload Format (Port 4, Downlink Response)

Down, Port 4: '06a106aabb12340fa210a0010004081122334455667788'
 '06' -> first Command is 6 bytes long
 'a106aabb1234' 6 bytes of Modbus Command
 'a1' -> slave device with address 161
 '06' -> function 6, write single Holding Register
 'aabb' -> address of Register to write = 43707
 '1234' -> two bytes of data
 '0f' -> second Command is 15 bytes long
 'a210a0010004081122334455667788' 15 byte of Modbus Command
 'a2' -> slave device with address 162
 '10' -> function 16, write multiple Holding Registers
 'a001' -> start at register 40961
 '0004' -> 4 registers to write
 '08' -> 8 bytes of data follow
 '1122334455667788' -> 8 bytes of data

Example resulting Uplink Up, Port 4:
'004b3dd67506a1860200000006a210a0010004'
 '004b3dd675' -> timestamp = 1262343797 -> 2010-01-01T11:03:17 UTC
 '06' -> first Response is 3 bytes long
 'a18602000000' 3 bytes of Modbus Response
 'a1' -> slave device address 161 '86' -> write single Holding Regsiter,
failed
 '02' -> error code 2: "Illegal Data Address"
 '0000' -> start register not used (undefined)
 '00' -> count not used (undefined)
 '06' - second Response is 6 bytes long
 'a210a0010004' 6 bytes of Modbus Response
 'a2' -> slave device address 162
 '10' -> write multiple Holding Registers, success
 'a001' -> start at register 40961
 '0004' -> 4 registers to write

Uplinks in Compact Payload Format

Example C1: Single Modbus Command, PlFmt 4

Attached device: B+G E-Tech power Meter

Config:
MbCmd = 010300000003 -> Read registers 0 to 3 from Slave 1
PlFmt = 4 -> Compact Format with Timestamp
PlMax = 51 -> Max 51 Bytes per Uplink
PlId = 0 -> Payload Id = 0

Info from Log
APP| Number of commands to be executed on cron: 1
APP| 01 03 00 00 00 03
APP| Compact format definition, id=0, max size=51
APP| Port 20:
APP| 000-000=error&fmt-id
APP| 001-005=timestamp
APP| 006-011=resp(010300000003)

Successful readout, leading to Uplink on Port 20:
'00005fd8bf08000000010033'
 '00' -> '0' no error, '00' -> PlId = 0
 '005fd8bf08' -> timestamp = 1608040200 -> 2020-12-15T13:50:00 UTC
 '000000010033' -> 6 Bytes data from 3 Registers -> 3.07 kWh

Failed readout, leading to Uplink on Port 20: '80005fd8c7caffffffffffff'
 '80' -> '1' error in any of the responses, '00' -> PlId = 0
 '005fd8c7ca' -> timestamp = 1608042442 -> 2020-12-15T14:27:22 UTC
 'ffffffffffff' -> 6 Bytes set to 0xff, indicating error

Example C2: Multiple Commands, PlFmt 5

Attached devices: Multiple B+G E-Tech power Meters

Config:
MbCmd = 010300000003,020300000003 -> Read registers 0 to 3 from Slave 1
PlFmt = 5 -> Compact Format with Timestamp
PlMax = 51 -> Max 51 Bytes per Uplink
PlId = 13 -> Payload Id = 13

Info from Log
APP| Number of commands to be executed on cron: 2
APP| 01 03 00 00 00 03
APP| 02 03 00 00 00 03
APP| Compact format definition, id=29, max size=51
APP| Port 20:
APP| 000-000=error&fmt-id
APP| 001-006=resp(010300000003)
APP| 007-012=resp(020300000003)

Successful readout of both, leading to Uplink on Port 20:
'1d0000000100330000001a0040'
 '1d' -> '0' no error, '1d' -> PlId = 13
 '000000010033' -> 6 Bytes data from 3 Registers, Meter 1 -> 3.07 kWh
 '0000001a0040' -> 6 Bytes data from 3 Registers, Meter 2 -> 67.20 kWh

Partly successful readout, leading to Uplink on Port 20:
'9d000000010033ffffffffffff'
 '9d' -> '1' error (in any of the values in message), '1d' -> PlId = 13
 '000000010033' -> 6 Bytes data from 3 Registers, Meter 1 -> 3.07 kWh
 'ffffffffffff' -> 6 Bytes set to 0xff to indicate error, Meter 2

Failed readout, leading to Uplink on Port 20:
'9dffffffffffffffffffffffff'
 '9d' -> '1' error (in any of the values in message), '1d' -> PlId = 13
 'ffffffffffff' -> 6 Bytes set to 0xff to indicate error, Meter 1
 'ffffffffffff' -> 6 Bytes set to 0xff to indicate error, Meter 2

Example C3: Multimple Commands, leading in multiple Upoads,
PlFmt 5

Config
MbCmd = 010300000010,010301000004,0103020a000c,010300800008
PlFmt = 5 -> Compact Format with Timestamp
PlMax = 40 -> Max 40 Bytes per Uplink
PlId = 10 -> Payload Id = 10

Info from Log
APP| Number of commands to be executed on cron: 4
APP| 01 03 00 00 00 10
APP| 01 03 01 00 00 04
APP| 01 03 02 0A 00 0C
APP| 01 03 00 80 00 08
APP| Compact format definition, id=10, max size=40
APP| Port 20:
APP| 000-000=error&fmt-id
APP| 001-032=resp(010300000010)
APP| Port 21:
APP| 000-000=error&fmt-id
APP| 001-008=resp(010301000004)
APP| 009-032=resp(0103020a000c)
APP| Port 22:
APP| 000-000=error&fmt-id
APP| 001-016=resp(010300800008)

Resulting in 3 consecutive uploads on Port 20-22:
Port 20:
0a0000000100020003000400050006000700080009000a000b000c000d000e000f
 '0a' -> '0' no error, '0a' -> PlId 10
 '0000000100020003000400050006000700080009000a000b000c000d000e000f' -> 32
Bytes of Data from Registers 0x0000-0x000f
Port 21:
8affffffffffffffff111122223333444455556666777788889999aaaabbbbcccc
 '8a' -> '1' error occured, '0a' -> PlId 10
 'ffffffffffffffff' -> 8 Bytes set to 0xff indicating error reading
Registers 0x0100-0x0103
 '111122223333444455556666777788889999aaaabbbbcccc' -> 24 Bytes of Data
from Registers 0x020a-0x0215
Port 22: 0a01010202030304040505060607070808
 '0a' -> '0' no error, '0a' -> PlId 10
 '01010202030304040505060607070808' -> 16 Bytes of Data from Registers
0x0080-0x0087

Dialog Mode
The Modbus Bridge has an additional interactive Operation Mode that can help finding the correct
Modbus Commands for normal operations. You enter it by setting the Configuration Parameter DialogMo

to using the Lobaro Configuration Adapter and the Lobaro Maintenance Tool. After saving the de true
configuration the device will reboot and enter Dialog Mode. To change the device back to normal
operations change the Parameter back to and save the config. DialogMode false

In Dialog Mode the Bridge will not connect to the LoRaWAN Network and it will not execute any
operations on its own. It will wait for user input over the Lobaro Maintenance Tool. On the tab showing
the device's log messages there is an input field labeled . You can enter Modbus Send via UART
commands here, followed by pressing return. The Bridge will send the commands over the bus just as it
would if it got them from configuration. The response will be observable in the Log.

The Commands must be entered as hex strings without any check sums. The Modbus parameters
(UART configuration and Modbus Mode RTU/ASCII) are taken from the configuration just as during
normal operations. The Bridge operates as an interactive Modbus master device that can be used for
diagnosing Modbus installations or executing a few commands on a device that has no permanent
Modbus connection.

In Dialog Mode the device does not enter any sleep states.

If you leave the Modbus Bridge in DialogMode while it is powered by battery it will quickly
drain the battery and run out of power. It is not possible to enter the DialogMode via
RemoteConfig.

Dialog Mode Example

Command sent via UART:
'010300100002'
 Read Holding Registers #16 and #17 from slave device with address 1.

Possible Responses:
'01830b' ->
 Device did not respond or could not be reached (error code 11, generated
by Bridge)

'018302' ->
 Reading holding registers with that addresses not supported by device
(error code 2, generated by Slave device with address 1)

'010300100002abcd1234' ->
 Successful readout of registers: register #16: 'abcd' register #17:
'1234'

Complex setups
The Modbus Bridge as described in this manual can be individually configured to read out any registers
and coils. For some setups, this is not enough. There can be situations in which you want to read
registers at different intervals, e.g. you might need some values with hourly updates and others only
every other day. For measuring values with high variance it can be necessary to take multiple reads over
a period of time and create an average value. Maybe you need to read a status register first and
depending on its value you want to decide which registers to read and transmit the values of. All this
scenarios are possible to solve using the Modbus Bridge, but their complexity leave the scope of our
standard firmware. If you need any special processing for your Modbus setup, please contact us with
your requirements, and we will make you an offer for an individual firmware that processes data the way
you need. If you find that the data rate LoRaWAN offers is a limitation for your setup, we could also
provide you with a Modbus solution that uses alternate data transmission technologies, for example
NarrowBand-IoT.

Appendices

Technical characteristics

Product

Type name (230V) LOB-GW-MODBUS-LW-PWR

Type name (3.6V Battery) LOB-GW-MODBUS-LW

Description Modbus Bridge (LoRaWAN) (Ext. 230V Power, Int. Antenna)

RF tranceiver

Type Semtech SX1272

Frequency 863 MHz to 870 MHz

Max. TX Power max. +13 dBm

Typical RF Range 2km

Ideal RF Range 10km (free line of sight)

LoRa communication

Protocol Class A / Class C LoRaWAN 1.0.2 EU868

Experimental: LoRaWAN 1.1

Activation method Over-the-air-activation (OTAA)
Activation by personalization (ABP)

Encryption AES128

Modbus communication

Bus RS-485 twisted pair wires (with optional GND)

Protocol RTU/ASCII

Bus IO Protection >±15 kV HBM Protection

Bus IO Protection >±12 kV IEC 61000-4-2 Contact Discharge

Bus IO Protection >±4 kV IEC 61000-4-4 Fast Transient Burst

Max. RS485 Cable Length 3m (longer cables possible but not tested)

Environmental Requirements

Operating temperature -20°C – 55°C

Max installation height 2m

Standards

CE Declaration of Conformity

 CE Declaration DR-15-5 Power Supply (pdf).

Disposal / WEEE / Entsorgung

Information about the disposal of the Device.

Reference decoder
This is a decoder written in JavaScript that can be used to parse the device's LoRaWAN messages. It
can be used as is in . The Things Network

function readVersion(bytes) {
 if (bytes.length<3) {
 return null;
 }
 return "v" + bytes[0] + "." + bytes[1] + "." + bytes[2];
}

function int40_BE(bytes, idx) {

https://doc.lobaro.com/download/attachments/4195084/dr-15-5-ce.pdf?version=2&modificationDate=1596633364216&api=v2
https://doc.lobaro.com/display/PUB/WEEE+Disposal
https://thethingsnetwork.org/

 bytes = bytes.slice(idx || 0);
 return bytes[0] << 32 |
 bytes[1] << 24 | bytes[2] << 16 | bytes[3] << 8 | bytes[4] << 0;
}

function int16_BE(bytes, idx) {
 bytes = bytes.slice(idx || 0);
 return bytes[0] << 8 | bytes[1] << 0;
}

function uint16_BE(bytes, idx) {
 bytes = bytes.slice(idx || 0);
 return bytes[0] << 8 | bytes[1] << 0;
}

function port1(bytes) {
 return {
 "port":1,
 "version":readVersion(bytes),
 "flags":bytes[3],
 "temp": int16_BE(bytes, 4) / 10,
 "vBat": int16_BE(bytes, 6) / 1000,
 "timestamp": int40_BE(bytes, 8),
 "operationMode": bytes[13],
 "noData": !!(bytes[3] & 0x01)
 };
}

function port2(bytes) {
 var regs = [];
 if (bytes.length > 5) {
 // loop through data packs
 var b = bytes.slice(5);
 while (b.length>=4) {
 var r = {
 "device":b[0],
 "register":int16_BE(b, 1),
 "count":b[3] & 0x3f,
 "error":!!(b[3]>>7),
 "data":null
 };
 var dataLen = r["count"]*2;
 if (b.length >= dataLen+4) {
 r["data"] = b.slice(4, 4 + dataLen);
 }
 regs.push(r);
 b = b.slice(4+dataLen);
 }
 }
 return {
 "port":2,
 "timestamp": int40_BE(bytes, 0),
 "registers": regs
 };
}

function modbusErrorString(code) {
 // Modbus exception codes
 // see https://en.wikipedia.org/wiki/Modbus#Exception_responses
 switch (code) {
 case 1:
 return "Illegal Function";
 case 2:
 return "Illegal Data Address";
 case 3:
 return "Illegal Data Value";
 case 4:
 return "Slave Device Failure";
 case 5:
 return "Acknowledge";
 case 6:

 return "Slave Device Busy";
 case 7:
 return "Negative Acknowledge";
 case 8:
 return "Memory Parity Error";
 case 10:
 return "Gateway Path Unavailable";
 case 11:
 return "Gateway Target Device Failed to Respond";
 default:
 return "Unknown error code";
 }
}

function parseModbusPayloadRegisters(payload) {
 if (payload.length < 1) {
 return null;
 }
 var byteCnt = payload[0];
 if (payload.length !== byteCnt + 1) {
 return null;
 }
 var vals = [];
 for (var i=0; i<byteCnt; i+=2) {
 vals.push([+payload[i+1], +payload[i+2]])
 }
 return vals;

}
function parseModbusResponse(raw) {
 var resp = {};
 if (raw.length >= 6) {
 var fun = raw[1] & 0xf;
 var error = !!(raw[1] & 0x80);
 var rawResp = raw.slice(0, raw.length - 3);
 resp["slave"] = raw[0];
 resp["function"] = fun;
 resp["error"] = error;
 resp["start"] = uint16_BE(raw, raw.length - 3);
 resp["cnt"] = raw[raw.length - 1];
 resp["raw"] = rawResp;
 if (error) {
 resp["errorCode"] = raw[2];
 resp["errorText"] = modbusErrorString(raw[2]);
 } else {
 resp["values"] = parseModbusPayloadRegisters(rawResp.slice(2))
 // TODO: coils
 }
 }
 return resp;
}

function FullResponses(bytes, port) {
 var timestamp = int40_BE(bytes);
 var pos = 5;
 var resps = [];
 while (pos < bytes.length) {
 var respLen = bytes[pos++];
 if (bytes.length >= pos + respLen) {
 var rawResponse = bytes.slice(pos, pos + respLen);
 resps.push(parseModbusResponse(rawResponse));
 pos += respLen;
 } else {
 break;
 }
 }
 return {
 "port": port,
 "timestamp" : timestamp,
 "responses": resps
 };

}

function bin2String(array) {
 var result = "";
 for (var i = 0; i < array.length; i++) {
 result += String.fromCharCode(array[i]);
 }
 return result;
}

function ConfigResponse(data) {
 var t = bin2String(data);
 return {
 "response" : t,
 "error" : (t.length === 0) || (t[0] === '!')
 }
}

/**
 * TTN decoder function.
 */
function Decoder(bytes, port) {
 switch (port) {
 case 1:
 // Status message:
 return port1(bytes);
 case 2:
 // not legacy format:
 return port2(bytes);
 case 3:
 case 4:
 // v1.0.0 format, full modbus responses:
 return FullResponses(bytes, port);
 case 5:
 // continuation of previous response:
 return {};
 case 6:
 // dense format with prefixed timestamp:
 return {};
 case 7:
 // dense format without timestamp:
 return {};
 case 128:
 return ConfigResponse(bytes);
 }
 return {"error":"invalid port", "port":port};
}

/**
 * LoRaServer decoder function.
 */
function Decode(fPort, bytes) {
 // wrap TTN Decoder:
 return Decoder(bytes, fPort);
}
function Parse(input) {
 var data = bytes(atob(input.data));
 var port = input.fPort;
 var fcnt = input.fCnt;
 var vals = Decoder(data, port);
 vals["port"] = port;
 vals["data"] = data;
 vals["fnct"] = fcnt;
 var lastFcnt = Device.getProperty("lastFcnt");
 vals["reset"] = fcnt <= lastFcnt;
 Device.setProperty("lastFcnt", fcnt);
 return vals;
}

Copyright Modbus Logo

http://www.modbus.org/

	Modbus (ASCII / RTU) Bridge (LoRaWAN)

